Answer
Verified
454.2k+ views
Hint: The measure basicity or the strength of base is known as base dissociation constant $\left( {{K_{\text{b}}}} \right)$. Calculate the pOH from the pH given which gives the concentration of ${\text{O}}{{\text{H}}^ - }$.
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Complete step by step answer:
Step 1:
Calculate the pOH using the equation as follows:
${\text{pH}} + {\text{pOH}} = 14$
Rearrange the equation for pOH as follows:
${\text{pOH}} = 14 - {\text{pH}}$
Substitute ${\text{12}}$ for pH. Thus,
${\text{pOH}} = 14 - 12 = 2$
Thus, the pOH is $2$.
Step 2:
Calculate the concentration of ${\text{O}}{{\text{H}}^ - }$ using the equation as follows:
${\text{pOH}} = - \log \left[ {{\text{O}}{{\text{H}}^ - }} \right]$
Rearrange the equation for the concentration of ${\text{O}}{{\text{H}}^ - }$ as follows:
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - {\text{pOH}}}}$
Thus,
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}}$
Thus, the concentration of ${\text{O}}{{\text{H}}^ - }$ is ${10^{ - 2}}{\text{ M}}$.
Step 3:
Calculate the base dissociation constant as follows:
The dissociation of diethylamine occurs as follows:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
At equilibrium:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
${\text{ 0}} \cdot {\text{05 0 0}}$
${\text{ 0}} \cdot {\text{05-x x x}}$
Thus, $x = \left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}} = 0 \cdot 01{\text{ M}}$
Calculate the base dissociation constant as follows:
${K_{\text{b}}} = \dfrac{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}_2^ + } \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}} \right]}}$
${K_{\text{b}}} = \dfrac{{\left( x \right)\left( x \right)}}{{\left( {0 \cdot 05 - x} \right)}}$
${K_{\text{b}}} = \dfrac{{\left( {0 \cdot 01} \right)\left( {0 \cdot 01} \right)}}{{\left( {0 \cdot 05 - 0 \cdot 01} \right)}}$
${K_{\text{b}}} = \dfrac{{{{\left( {0 \cdot 01} \right)}^2}}}{{0 \cdot 04}}$
${K_{\text{b}}} = 2 \cdot 5 \times {10^{ - 3}}$
Thus, the base dissociation constant is $2 \cdot 5 \times {10^{ - 3}}$.
Note:
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Complete step by step answer:
Step 1:
Calculate the pOH using the equation as follows:
${\text{pH}} + {\text{pOH}} = 14$
Rearrange the equation for pOH as follows:
${\text{pOH}} = 14 - {\text{pH}}$
Substitute ${\text{12}}$ for pH. Thus,
${\text{pOH}} = 14 - 12 = 2$
Thus, the pOH is $2$.
Step 2:
Calculate the concentration of ${\text{O}}{{\text{H}}^ - }$ using the equation as follows:
${\text{pOH}} = - \log \left[ {{\text{O}}{{\text{H}}^ - }} \right]$
Rearrange the equation for the concentration of ${\text{O}}{{\text{H}}^ - }$ as follows:
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - {\text{pOH}}}}$
Thus,
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}}$
Thus, the concentration of ${\text{O}}{{\text{H}}^ - }$ is ${10^{ - 2}}{\text{ M}}$.
Step 3:
Calculate the base dissociation constant as follows:
The dissociation of diethylamine occurs as follows:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
At equilibrium:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
${\text{ 0}} \cdot {\text{05 0 0}}$
${\text{ 0}} \cdot {\text{05-x x x}}$
Thus, $x = \left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}} = 0 \cdot 01{\text{ M}}$
Calculate the base dissociation constant as follows:
${K_{\text{b}}} = \dfrac{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}_2^ + } \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}} \right]}}$
${K_{\text{b}}} = \dfrac{{\left( x \right)\left( x \right)}}{{\left( {0 \cdot 05 - x} \right)}}$
${K_{\text{b}}} = \dfrac{{\left( {0 \cdot 01} \right)\left( {0 \cdot 01} \right)}}{{\left( {0 \cdot 05 - 0 \cdot 01} \right)}}$
${K_{\text{b}}} = \dfrac{{{{\left( {0 \cdot 01} \right)}^2}}}{{0 \cdot 04}}$
${K_{\text{b}}} = 2 \cdot 5 \times {10^{ - 3}}$
Thus, the base dissociation constant is $2 \cdot 5 \times {10^{ - 3}}$.
Note:
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE