
The period of revolution of a charged particle inside a cyclotron does not depend on:
A. The magnetic induction
B. The charge of the particle
C. The velocity of the particle
D. The mass of the particle
Answer
579k+ views
Hint: Cyclotron hastens up charged particles to very large scales energies. Its working principle is: When a charged particle such as electron and proton moves normally to a magnetic field, it experiences magnetic force and moves in a circular path.
Complete step by step solution:
Cyclotron: A cyclotron is an accelerator of particles. It is a powered electrical machine producing a beam of charged parts which is used for medical purpose, industrial and investigational applications. Cyclotron was invented by Ernest O. Lawrence in \[1929 - 1930\] at the University of California. In an outward path from the center of a flat, cylindrical vacuum chamber, a cyclotron accelerates charged particles. The particles are tracked by a static magnetic field on a spiral trajectory and accelerated through a quickly varying electric field (radio frequency). For this invention, Lawrence received the \[1939\] Nobel Prize for Physics.
Velocity: The velocity of an object is the rate of change of position relative to a reference framework and depends on time. Velocity is equivalent to the specified speed and direction of motion of an object (e.g. northward \[60\,{\text{km/h}}\]). Velocity, the branch of classical mechanics which describes the motion of bodies, is a fundamental concept in kinematics.
The particle moves in a plane perpendicular to B when the velocity of a charged particle is perpendicular to a uniform B magnetic field. This motion is referred to as a cyclotron. Here is the necessary magnetic force to keep the particle in a circle motion.
Here,
\[
{F_B} = qvB \\
= \dfrac{{m{v^2}}}{r} \\
\]
Or,
\[r = mv/qB\]
So, the period of revolution,
\[T = \dfrac{{2\pi r}}{v} = \dfrac{{2\pi m}}{{qB}}\]
The revolution period does not therefore depend on velocity, \[v\].
Hence, the required answer is C.
Note: When the velocity of a charged particle is perpendicular to a uniform B magnetic field, the particle moves in a plane perpendicular to B. This motion is termed a cyclotron. Here's the magnetic force needed to keep the particle in motion in a circle.
Complete step by step solution:
Cyclotron: A cyclotron is an accelerator of particles. It is a powered electrical machine producing a beam of charged parts which is used for medical purpose, industrial and investigational applications. Cyclotron was invented by Ernest O. Lawrence in \[1929 - 1930\] at the University of California. In an outward path from the center of a flat, cylindrical vacuum chamber, a cyclotron accelerates charged particles. The particles are tracked by a static magnetic field on a spiral trajectory and accelerated through a quickly varying electric field (radio frequency). For this invention, Lawrence received the \[1939\] Nobel Prize for Physics.
Velocity: The velocity of an object is the rate of change of position relative to a reference framework and depends on time. Velocity is equivalent to the specified speed and direction of motion of an object (e.g. northward \[60\,{\text{km/h}}\]). Velocity, the branch of classical mechanics which describes the motion of bodies, is a fundamental concept in kinematics.
The particle moves in a plane perpendicular to B when the velocity of a charged particle is perpendicular to a uniform B magnetic field. This motion is referred to as a cyclotron. Here is the necessary magnetic force to keep the particle in a circle motion.
Here,
\[
{F_B} = qvB \\
= \dfrac{{m{v^2}}}{r} \\
\]
Or,
\[r = mv/qB\]
So, the period of revolution,
\[T = \dfrac{{2\pi r}}{v} = \dfrac{{2\pi m}}{{qB}}\]
The revolution period does not therefore depend on velocity, \[v\].
Hence, the required answer is C.
Note: When the velocity of a charged particle is perpendicular to a uniform B magnetic field, the particle moves in a plane perpendicular to B. This motion is termed a cyclotron. Here's the magnetic force needed to keep the particle in motion in a circle.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

