The orthogonal projection of the point A with position vector (1,2,3) on the plane 3x-y+4z=0 is
[a] \[\left( -1,3,-1 \right)\]
[b] \[\left( -\dfrac{1}{2},\dfrac{5}{2},1 \right)\]
[c] \[\left( \dfrac{1}{2},\dfrac{-5}{2},-1 \right)\]
[d] \[\left( 6,-7,-5 \right)\]
Last updated date: 23rd Mar 2023
•
Total views: 304.5k
•
Views today: 2.82k
Answer
304.5k+ views
Hint: The normal vector of the plane ax+by+cz = d is (a,b,c). So choose the point P(x,y,z) PA is parallel to the normal vector. P also satisfies the plane equation. This will give you a system of three equations. Solve the system using any method. This will give the coordinates of the point P.
Complete step-by-step answer:
We know that the normal vector of the plane ax+by+cz = d is (a,b,c)
Here a = 3, b = -1, c = 4 and d = 0.
Hence the normal vector(N) of the plane is \[3\widehat{i}\text{ - }\widehat{j}\text{ + }4\widehat{k}\]
Let P(x,y,z) be the project of A on the plane 3x-y+4z=0
Since P lies on the plane, we have
3x-y+4z = 0 (i)
Also \[\overrightarrow{AP}=\left( x-1 \right)\widehat{i}\text{ +}\left( y-2 \right)\widehat{j}\text{ + }\left( z-3 \right)\widehat{k}\]
Since $AP\parallel N$we have
$\begin{align}
& \dfrac{x-1}{3}=\dfrac{y-2}{-1}=\dfrac{z-3}{4}=t\text{ (say)} \\
& \Rightarrow x=3t+1,y=2-t,z=4t+3 \\
\end{align}$
Now we have
Put the value of x,y and z in equation (i) we get
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
\end{align}\]
Subtracting 13 from both sides, we get
$\begin{align}
& 26t+13-13=0-13 \\
& \Rightarrow 26t=-13 \\
\end{align}$
Dividing both sides by 26, we get
$\begin{align}
& \dfrac{26t}{26}=\dfrac{-13}{26} \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}$
Hence we have
$\begin{align}
& x=3t+1=\dfrac{-3}{2}+1=\dfrac{-1}{2} \\
& y=2-t=2-\left( -\dfrac{1}{2} \right)=2+\dfrac{1}{2}=\dfrac{5}{2} \\
& z=4t+3=4\left( -\dfrac{1}{2} \right)+3=-2+3=1 \\
\end{align}$
Hence $P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right)$ is the point of the orthogonal projection of A.
Note: Alternatively we have, the equation of the line perpendicular to the plane passing through A in parametric form is $x=3t+1,y=-t+2,z=4t+3$ where t is the parameter.
The line intersects the plane at point P(t)
Then we have
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
& \Rightarrow 26t=-13 \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}\]
Hence
$\begin{align}
& P\equiv \left( 3\times \dfrac{-1}{2}+1,-\dfrac{-1}{2}+2,4\times \dfrac{-1}{2}+3 \right) \\
& \Rightarrow P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right) \\
\end{align}$
Complete step-by-step answer:
We know that the normal vector of the plane ax+by+cz = d is (a,b,c)
Here a = 3, b = -1, c = 4 and d = 0.
Hence the normal vector(N) of the plane is \[3\widehat{i}\text{ - }\widehat{j}\text{ + }4\widehat{k}\]
Let P(x,y,z) be the project of A on the plane 3x-y+4z=0
Since P lies on the plane, we have
3x-y+4z = 0 (i)
Also \[\overrightarrow{AP}=\left( x-1 \right)\widehat{i}\text{ +}\left( y-2 \right)\widehat{j}\text{ + }\left( z-3 \right)\widehat{k}\]
Since $AP\parallel N$we have
$\begin{align}
& \dfrac{x-1}{3}=\dfrac{y-2}{-1}=\dfrac{z-3}{4}=t\text{ (say)} \\
& \Rightarrow x=3t+1,y=2-t,z=4t+3 \\
\end{align}$
Now we have
Put the value of x,y and z in equation (i) we get
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
\end{align}\]
Subtracting 13 from both sides, we get
$\begin{align}
& 26t+13-13=0-13 \\
& \Rightarrow 26t=-13 \\
\end{align}$
Dividing both sides by 26, we get
$\begin{align}
& \dfrac{26t}{26}=\dfrac{-13}{26} \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}$
Hence we have
$\begin{align}
& x=3t+1=\dfrac{-3}{2}+1=\dfrac{-1}{2} \\
& y=2-t=2-\left( -\dfrac{1}{2} \right)=2+\dfrac{1}{2}=\dfrac{5}{2} \\
& z=4t+3=4\left( -\dfrac{1}{2} \right)+3=-2+3=1 \\
\end{align}$
Hence $P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right)$ is the point of the orthogonal projection of A.
Note: Alternatively we have, the equation of the line perpendicular to the plane passing through A in parametric form is $x=3t+1,y=-t+2,z=4t+3$ where t is the parameter.
The line intersects the plane at point P(t)
Then we have
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
& \Rightarrow 26t=-13 \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}\]
Hence
$\begin{align}
& P\equiv \left( 3\times \dfrac{-1}{2}+1,-\dfrac{-1}{2}+2,4\times \dfrac{-1}{2}+3 \right) \\
& \Rightarrow P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right) \\
\end{align}$
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
