Answer
Verified
489.9k+ views
Hint: The normal vector of the plane ax+by+cz = d is (a,b,c). So choose the point P(x,y,z) PA is parallel to the normal vector. P also satisfies the plane equation. This will give you a system of three equations. Solve the system using any method. This will give the coordinates of the point P.
Complete step-by-step answer:
We know that the normal vector of the plane ax+by+cz = d is (a,b,c)
Here a = 3, b = -1, c = 4 and d = 0.
Hence the normal vector(N) of the plane is \[3\widehat{i}\text{ - }\widehat{j}\text{ + }4\widehat{k}\]
Let P(x,y,z) be the project of A on the plane 3x-y+4z=0
Since P lies on the plane, we have
3x-y+4z = 0 (i)
Also \[\overrightarrow{AP}=\left( x-1 \right)\widehat{i}\text{ +}\left( y-2 \right)\widehat{j}\text{ + }\left( z-3 \right)\widehat{k}\]
Since $AP\parallel N$we have
$\begin{align}
& \dfrac{x-1}{3}=\dfrac{y-2}{-1}=\dfrac{z-3}{4}=t\text{ (say)} \\
& \Rightarrow x=3t+1,y=2-t,z=4t+3 \\
\end{align}$
Now we have
Put the value of x,y and z in equation (i) we get
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
\end{align}\]
Subtracting 13 from both sides, we get
$\begin{align}
& 26t+13-13=0-13 \\
& \Rightarrow 26t=-13 \\
\end{align}$
Dividing both sides by 26, we get
$\begin{align}
& \dfrac{26t}{26}=\dfrac{-13}{26} \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}$
Hence we have
$\begin{align}
& x=3t+1=\dfrac{-3}{2}+1=\dfrac{-1}{2} \\
& y=2-t=2-\left( -\dfrac{1}{2} \right)=2+\dfrac{1}{2}=\dfrac{5}{2} \\
& z=4t+3=4\left( -\dfrac{1}{2} \right)+3=-2+3=1 \\
\end{align}$
Hence $P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right)$ is the point of the orthogonal projection of A.
Note: Alternatively we have, the equation of the line perpendicular to the plane passing through A in parametric form is $x=3t+1,y=-t+2,z=4t+3$ where t is the parameter.
The line intersects the plane at point P(t)
Then we have
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
& \Rightarrow 26t=-13 \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}\]
Hence
$\begin{align}
& P\equiv \left( 3\times \dfrac{-1}{2}+1,-\dfrac{-1}{2}+2,4\times \dfrac{-1}{2}+3 \right) \\
& \Rightarrow P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right) \\
\end{align}$
Complete step-by-step answer:
We know that the normal vector of the plane ax+by+cz = d is (a,b,c)
Here a = 3, b = -1, c = 4 and d = 0.
Hence the normal vector(N) of the plane is \[3\widehat{i}\text{ - }\widehat{j}\text{ + }4\widehat{k}\]
Let P(x,y,z) be the project of A on the plane 3x-y+4z=0
Since P lies on the plane, we have
3x-y+4z = 0 (i)
Also \[\overrightarrow{AP}=\left( x-1 \right)\widehat{i}\text{ +}\left( y-2 \right)\widehat{j}\text{ + }\left( z-3 \right)\widehat{k}\]
Since $AP\parallel N$we have
$\begin{align}
& \dfrac{x-1}{3}=\dfrac{y-2}{-1}=\dfrac{z-3}{4}=t\text{ (say)} \\
& \Rightarrow x=3t+1,y=2-t,z=4t+3 \\
\end{align}$
Now we have
Put the value of x,y and z in equation (i) we get
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
\end{align}\]
Subtracting 13 from both sides, we get
$\begin{align}
& 26t+13-13=0-13 \\
& \Rightarrow 26t=-13 \\
\end{align}$
Dividing both sides by 26, we get
$\begin{align}
& \dfrac{26t}{26}=\dfrac{-13}{26} \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}$
Hence we have
$\begin{align}
& x=3t+1=\dfrac{-3}{2}+1=\dfrac{-1}{2} \\
& y=2-t=2-\left( -\dfrac{1}{2} \right)=2+\dfrac{1}{2}=\dfrac{5}{2} \\
& z=4t+3=4\left( -\dfrac{1}{2} \right)+3=-2+3=1 \\
\end{align}$
Hence $P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right)$ is the point of the orthogonal projection of A.
Note: Alternatively we have, the equation of the line perpendicular to the plane passing through A in parametric form is $x=3t+1,y=-t+2,z=4t+3$ where t is the parameter.
The line intersects the plane at point P(t)
Then we have
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
& \Rightarrow 26t=-13 \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}\]
Hence
$\begin{align}
& P\equiv \left( 3\times \dfrac{-1}{2}+1,-\dfrac{-1}{2}+2,4\times \dfrac{-1}{2}+3 \right) \\
& \Rightarrow P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right) \\
\end{align}$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths