
The orthogonal projection of the point A with position vector (1,2,3) on the plane 3x-y+4z=0 is
[a] \[\left( -1,3,-1 \right)\]
[b] \[\left( -\dfrac{1}{2},\dfrac{5}{2},1 \right)\]
[c] \[\left( \dfrac{1}{2},\dfrac{-5}{2},-1 \right)\]
[d] \[\left( 6,-7,-5 \right)\]
Answer
532.5k+ views
Hint: The normal vector of the plane ax+by+cz = d is (a,b,c). So choose the point P(x,y,z) PA is parallel to the normal vector. P also satisfies the plane equation. This will give you a system of three equations. Solve the system using any method. This will give the coordinates of the point P.
Complete step-by-step answer:
We know that the normal vector of the plane ax+by+cz = d is (a,b,c)
Here a = 3, b = -1, c = 4 and d = 0.
Hence the normal vector(N) of the plane is \[3\widehat{i}\text{ - }\widehat{j}\text{ + }4\widehat{k}\]
Let P(x,y,z) be the project of A on the plane 3x-y+4z=0
Since P lies on the plane, we have
3x-y+4z = 0 (i)
Also \[\overrightarrow{AP}=\left( x-1 \right)\widehat{i}\text{ +}\left( y-2 \right)\widehat{j}\text{ + }\left( z-3 \right)\widehat{k}\]
Since $AP\parallel N$we have
$\begin{align}
& \dfrac{x-1}{3}=\dfrac{y-2}{-1}=\dfrac{z-3}{4}=t\text{ (say)} \\
& \Rightarrow x=3t+1,y=2-t,z=4t+3 \\
\end{align}$
Now we have
Put the value of x,y and z in equation (i) we get
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
\end{align}\]
Subtracting 13 from both sides, we get
$\begin{align}
& 26t+13-13=0-13 \\
& \Rightarrow 26t=-13 \\
\end{align}$
Dividing both sides by 26, we get
$\begin{align}
& \dfrac{26t}{26}=\dfrac{-13}{26} \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}$
Hence we have
$\begin{align}
& x=3t+1=\dfrac{-3}{2}+1=\dfrac{-1}{2} \\
& y=2-t=2-\left( -\dfrac{1}{2} \right)=2+\dfrac{1}{2}=\dfrac{5}{2} \\
& z=4t+3=4\left( -\dfrac{1}{2} \right)+3=-2+3=1 \\
\end{align}$
Hence $P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right)$ is the point of the orthogonal projection of A.
Note: Alternatively we have, the equation of the line perpendicular to the plane passing through A in parametric form is $x=3t+1,y=-t+2,z=4t+3$ where t is the parameter.
The line intersects the plane at point P(t)
Then we have
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
& \Rightarrow 26t=-13 \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}\]
Hence
$\begin{align}
& P\equiv \left( 3\times \dfrac{-1}{2}+1,-\dfrac{-1}{2}+2,4\times \dfrac{-1}{2}+3 \right) \\
& \Rightarrow P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right) \\
\end{align}$
Complete step-by-step answer:
We know that the normal vector of the plane ax+by+cz = d is (a,b,c)
Here a = 3, b = -1, c = 4 and d = 0.
Hence the normal vector(N) of the plane is \[3\widehat{i}\text{ - }\widehat{j}\text{ + }4\widehat{k}\]
Let P(x,y,z) be the project of A on the plane 3x-y+4z=0
Since P lies on the plane, we have
3x-y+4z = 0 (i)
Also \[\overrightarrow{AP}=\left( x-1 \right)\widehat{i}\text{ +}\left( y-2 \right)\widehat{j}\text{ + }\left( z-3 \right)\widehat{k}\]
Since $AP\parallel N$we have
$\begin{align}
& \dfrac{x-1}{3}=\dfrac{y-2}{-1}=\dfrac{z-3}{4}=t\text{ (say)} \\
& \Rightarrow x=3t+1,y=2-t,z=4t+3 \\
\end{align}$
Now we have
Put the value of x,y and z in equation (i) we get
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
\end{align}\]
Subtracting 13 from both sides, we get
$\begin{align}
& 26t+13-13=0-13 \\
& \Rightarrow 26t=-13 \\
\end{align}$
Dividing both sides by 26, we get
$\begin{align}
& \dfrac{26t}{26}=\dfrac{-13}{26} \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}$
Hence we have
$\begin{align}
& x=3t+1=\dfrac{-3}{2}+1=\dfrac{-1}{2} \\
& y=2-t=2-\left( -\dfrac{1}{2} \right)=2+\dfrac{1}{2}=\dfrac{5}{2} \\
& z=4t+3=4\left( -\dfrac{1}{2} \right)+3=-2+3=1 \\
\end{align}$
Hence $P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right)$ is the point of the orthogonal projection of A.
Note: Alternatively we have, the equation of the line perpendicular to the plane passing through A in parametric form is $x=3t+1,y=-t+2,z=4t+3$ where t is the parameter.
The line intersects the plane at point P(t)
Then we have
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
& \Rightarrow 26t=-13 \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}\]
Hence
$\begin{align}
& P\equiv \left( 3\times \dfrac{-1}{2}+1,-\dfrac{-1}{2}+2,4\times \dfrac{-1}{2}+3 \right) \\
& \Rightarrow P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right) \\
\end{align}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
