The number of real solutions of the equation $\sin \left( {{e^x}} \right) = {5^x} + {5^{ - x}}$
$
a.0 \\
b.1 \\
c.2 \\
d.{\text{None of these}}{\text{.}} \\
$
Answer
384.6k+ views
Hint- sine function is given in the problem and we know sine always lie between $\left[ { - 1,1} \right]$i.e.$ - 1 \leqslant \sin \theta \leqslant 1$
Given equation
$\sin \left( {{e^x}} \right) = {5^x} + {5^{ - x}}$
Let ${y_1} = \sin \left( {{e^x}} \right),{\text{ & }}{y_2} = {5^x} + {5^{ - x}}$
Now as we know that $ - 1 \leqslant \sin \theta \leqslant 1$
Now as we know for real solution $0 < {e^x} < \infty $
Therefore $ - 1 \leqslant \sin \left( {{e^x}} \right) \leqslant 1$
Therefore the maximum value of ${y_1}$is 1 and the minimum value of ${y_1}$is -1.
$
\therefore {\left( {{y_1}} \right)_{\min }} = - 1 \\
{\left( {{y_1}} \right)_{\max }} = 1..................\left( 1 \right) \\
$
Now let ${y_2} = {5^x} + {5^{ - x}} = {5^x} + \dfrac{1}{{{5^x}}}$
Let ${5^x} = t$
$\therefore {y_2} = t + \dfrac{1}{t}$
Now we have to find out the maximum and minimum value of above function
So, differentiate above equation w.r.t. $t$ And equate to zero.
$
\Rightarrow \dfrac{d}{{dt}}{y_2} = 1 - \dfrac{1}{{{t^2}}} = 0 \\
\Rightarrow {t^2} = 1 \\
\Rightarrow t = \pm 1 \\
$
Now double differentiate the above equation
$ \Rightarrow \dfrac{{{d^2}}}{{d{t^2}}}{y_2} = \dfrac{d}{{dt}}\left( {1 - \dfrac{1}{{{t^2}}}} \right) = 0 + \dfrac{2}{{{t^3}}}$
Now for $t = 1$
The value of above equation is positive so the function is minimum at $t = 1$
Now for real solution t should be greater than zero$\left( {t > 0} \right)$
Because ${5^x} = t$ for t less than zero (t<0), ${5^x}$ become imaginary hence there is no real solution for t less than zero.
So, at $t = 1,{\text{ }}{y_2} = 1 + 1 = 2$
So, ${\left( {{y_2}} \right)_{\min }} = 2................\left( 2 \right)$
$\therefore {y_2} \geqslant 2$
Now from equation (1) and (2)
${\left( {{y_1}} \right)_{\max }} = 1,{\text{ }}{\left( {{y_2}} \right)_{\min }} = 2$…………….. (3)
But from the given equation
$
\sin \left( {{e^x}} \right) = {5^x} + {5^{ - x}} \\
{y_1} = {y_2} \\
$
So, from equation (3) the above condition never holds for real solutions.
So, the number of real solutions of the given equation is zero.
Hence option (a) is correct.
Note- In such types of questions always remember the range of sine function so, in above problem solve L.H.S and R.H.S separately and find out the range of these functions for real solution, then compare their ranges and also check the equality, we will get the required answer.
Given equation
$\sin \left( {{e^x}} \right) = {5^x} + {5^{ - x}}$
Let ${y_1} = \sin \left( {{e^x}} \right),{\text{ & }}{y_2} = {5^x} + {5^{ - x}}$
Now as we know that $ - 1 \leqslant \sin \theta \leqslant 1$
Now as we know for real solution $0 < {e^x} < \infty $
Therefore $ - 1 \leqslant \sin \left( {{e^x}} \right) \leqslant 1$
Therefore the maximum value of ${y_1}$is 1 and the minimum value of ${y_1}$is -1.
$
\therefore {\left( {{y_1}} \right)_{\min }} = - 1 \\
{\left( {{y_1}} \right)_{\max }} = 1..................\left( 1 \right) \\
$
Now let ${y_2} = {5^x} + {5^{ - x}} = {5^x} + \dfrac{1}{{{5^x}}}$
Let ${5^x} = t$
$\therefore {y_2} = t + \dfrac{1}{t}$
Now we have to find out the maximum and minimum value of above function
So, differentiate above equation w.r.t. $t$ And equate to zero.
$
\Rightarrow \dfrac{d}{{dt}}{y_2} = 1 - \dfrac{1}{{{t^2}}} = 0 \\
\Rightarrow {t^2} = 1 \\
\Rightarrow t = \pm 1 \\
$
Now double differentiate the above equation
$ \Rightarrow \dfrac{{{d^2}}}{{d{t^2}}}{y_2} = \dfrac{d}{{dt}}\left( {1 - \dfrac{1}{{{t^2}}}} \right) = 0 + \dfrac{2}{{{t^3}}}$
Now for $t = 1$
The value of above equation is positive so the function is minimum at $t = 1$
Now for real solution t should be greater than zero$\left( {t > 0} \right)$
Because ${5^x} = t$ for t less than zero (t<0), ${5^x}$ become imaginary hence there is no real solution for t less than zero.
So, at $t = 1,{\text{ }}{y_2} = 1 + 1 = 2$
So, ${\left( {{y_2}} \right)_{\min }} = 2................\left( 2 \right)$
$\therefore {y_2} \geqslant 2$
Now from equation (1) and (2)
${\left( {{y_1}} \right)_{\max }} = 1,{\text{ }}{\left( {{y_2}} \right)_{\min }} = 2$…………….. (3)
But from the given equation
$
\sin \left( {{e^x}} \right) = {5^x} + {5^{ - x}} \\
{y_1} = {y_2} \\
$
So, from equation (3) the above condition never holds for real solutions.
So, the number of real solutions of the given equation is zero.
Hence option (a) is correct.
Note- In such types of questions always remember the range of sine function so, in above problem solve L.H.S and R.H.S separately and find out the range of these functions for real solution, then compare their ranges and also check the equality, we will get the required answer.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Why do noble gases have positive electron gain enthalpy class 11 chemistry CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
