# The number of real roots of \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\] is

(a) 0

(b) 2

(c) 4

(d) None of these

Answer

Verified

327.3k+ views

Hint: To find the roots of the given equation, factorize the given equation by splitting the middle terms. When the equation is factored up to a quadratic equation, calculate the discriminant of the equation to check the nature of the roots. Count all the real roots of the equation and ignore the imaginary ones.

Complete step-by-step answer:

We have to find the real roots of the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\]. To do so, we will firstly simplify the equation and then solve it to find the roots.

We know that \[{{\left( a+b \right)}^{4}}={{a}^{4}}+{{b}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}\].

$\Rightarrow$ \[{{x}^{4}}+4{{x}^{3}}\left( 3 \right)+6{{x}^{2}}{{\left( 3 \right)}^{2}}+4x{{\left( 3 \right)}^{3}}+{{\left( 3 \right)}^{4}}+{{x}^{4}}+4{{x}^{3}}\left( 5 \right)+6{{x}^{2}}{{\left( 5 \right)}^{2}}+4x{{\left( 5 \right)}^{3}}+{{\left( 5 \right)}^{4}}=16\].

Simplifying the above expression, we have

$\Rightarrow$ \[2{{x}^{4}}+32{{x}^{3}}+204{{x}^{2}}+608x+706=16\].

$\Rightarrow$ \[{{x}^{4}}+16{{x}^{3}}+102{{x}^{2}}+304x+345=0\].

We will now factorize the above equation by splitting the terms.

Rearranging the terms of the above equation, we have

$\Rightarrow$ \[{{x}^{4}}+3{{x}^{3}}+13{{x}^{3}}+39{{x}^{2}}+63{{x}^{2}}+189x+115x+345=0\].

Thus, we have

$\Rightarrow$ \[{{x}^{3}}\left( x+3 \right)+13{{x}^{2}}\left( x+3 \right)+63x\left( x+3 \right)+115\left( x+3 \right)=0\].

Taking out the common terms, we have

$\Rightarrow$ \[\left( x+3 \right)\left( {{x}^{3}}+13{{x}^{2}}+63x+115 \right)=0\].

Further splitting the terms of the equation, we have

$\Rightarrow$ \[\left( x+3 \right)\left( {{x}^{3}}+5{{x}^{2}}+8{{x}^{2}}+40x+23x+115 \right)=0\].

Thus, we have

$\Rightarrow$ \[\left( x+3 \right)\{{{x}^{2}}\left( x+5 \right)+8x\left( x+5 \right)+23\left( x+5 \right)\}=0\].

Taking out the common terms, we have \[\left( x+3 \right)\left( x+5 \right)\left( {{x}^{2}}+8x+23 \right)=0\].

We will now split the terms of the equation \[{{x}^{2}}+8x+23\].

We will firstly try to evaluate the discriminant of this equation.

We know that any equation of the form \[a{{x}^{2}}+bx+c\] has the value of discriminant as \[{{b}^{2}}-4ac\].

Substituting \[a=1,b=8,c=23\] in the above equation, we have the value of discriminant as \[{{\left( 8 \right)}^{2}}-4\left( 23 \right)=64-92=-28\].

We observe that the equation \[{{x}^{2}}+8x+23\] has a negative value of discriminant. Thus, it has imaginary roots.

Hence, we observe that only real roots of the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\] can be obtained by equating \[\left( x+3 \right)\left( x+5 \right)\] to zero.

So, we have \[\left( x+3 \right)\left( x+5 \right)=0\]. Thus, we have \[x=-3,-5\].

Hence, the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\] has only two real roots, which is option (b).

Note: It’s not necessary to completely factorize the equation to find the number of real roots. We can check the nature of roots of a quadratic equation by calculating the value of discriminant. However, it’s not necessary to calculate the value of discriminant. We can factorize the equation completely and find its roots.

Complete step-by-step answer:

We have to find the real roots of the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\]. To do so, we will firstly simplify the equation and then solve it to find the roots.

We know that \[{{\left( a+b \right)}^{4}}={{a}^{4}}+{{b}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}\].

$\Rightarrow$ \[{{x}^{4}}+4{{x}^{3}}\left( 3 \right)+6{{x}^{2}}{{\left( 3 \right)}^{2}}+4x{{\left( 3 \right)}^{3}}+{{\left( 3 \right)}^{4}}+{{x}^{4}}+4{{x}^{3}}\left( 5 \right)+6{{x}^{2}}{{\left( 5 \right)}^{2}}+4x{{\left( 5 \right)}^{3}}+{{\left( 5 \right)}^{4}}=16\].

Simplifying the above expression, we have

$\Rightarrow$ \[2{{x}^{4}}+32{{x}^{3}}+204{{x}^{2}}+608x+706=16\].

$\Rightarrow$ \[{{x}^{4}}+16{{x}^{3}}+102{{x}^{2}}+304x+345=0\].

We will now factorize the above equation by splitting the terms.

Rearranging the terms of the above equation, we have

$\Rightarrow$ \[{{x}^{4}}+3{{x}^{3}}+13{{x}^{3}}+39{{x}^{2}}+63{{x}^{2}}+189x+115x+345=0\].

Thus, we have

$\Rightarrow$ \[{{x}^{3}}\left( x+3 \right)+13{{x}^{2}}\left( x+3 \right)+63x\left( x+3 \right)+115\left( x+3 \right)=0\].

Taking out the common terms, we have

$\Rightarrow$ \[\left( x+3 \right)\left( {{x}^{3}}+13{{x}^{2}}+63x+115 \right)=0\].

Further splitting the terms of the equation, we have

$\Rightarrow$ \[\left( x+3 \right)\left( {{x}^{3}}+5{{x}^{2}}+8{{x}^{2}}+40x+23x+115 \right)=0\].

Thus, we have

$\Rightarrow$ \[\left( x+3 \right)\{{{x}^{2}}\left( x+5 \right)+8x\left( x+5 \right)+23\left( x+5 \right)\}=0\].

Taking out the common terms, we have \[\left( x+3 \right)\left( x+5 \right)\left( {{x}^{2}}+8x+23 \right)=0\].

We will now split the terms of the equation \[{{x}^{2}}+8x+23\].

We will firstly try to evaluate the discriminant of this equation.

We know that any equation of the form \[a{{x}^{2}}+bx+c\] has the value of discriminant as \[{{b}^{2}}-4ac\].

Substituting \[a=1,b=8,c=23\] in the above equation, we have the value of discriminant as \[{{\left( 8 \right)}^{2}}-4\left( 23 \right)=64-92=-28\].

We observe that the equation \[{{x}^{2}}+8x+23\] has a negative value of discriminant. Thus, it has imaginary roots.

Hence, we observe that only real roots of the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\] can be obtained by equating \[\left( x+3 \right)\left( x+5 \right)\] to zero.

So, we have \[\left( x+3 \right)\left( x+5 \right)=0\]. Thus, we have \[x=-3,-5\].

Hence, the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\] has only two real roots, which is option (b).

Note: It’s not necessary to completely factorize the equation to find the number of real roots. We can check the nature of roots of a quadratic equation by calculating the value of discriminant. However, it’s not necessary to calculate the value of discriminant. We can factorize the equation completely and find its roots.

Last updated date: 04th Jun 2023

•

Total views: 327.3k

•

Views today: 7.83k

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE