# The number of points at which the function \[f\left( x \right)=\left| x+1 \right|+\left| x-1 \right|\] is not differentiable is:

(a) \[2\]

(b) \[1\]

(c) \[0\]

(d) infinite

Last updated date: 23rd Mar 2023

•

Total views: 308.1k

•

Views today: 7.85k

Answer

Verified

308.1k+ views

Hint: A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].

The given function is \[f\left( x \right)=\left| x+1 \right|+\left| x-1 \right|\]

We know,

\[\left| x+a \right|=\left\{ \begin{align}

& x+a,x\ge -a \\

& -(x+a),x\le -a \\

\end{align} \right.\]

So , \[\left| x+1 \right|=\left\{ \begin{align}

& x+1,\text{ }x\ge -1 \\

& -\left( x+1 \right),\text{ }x\le -1 \\

\end{align} \right.\]

and \[\left| x-1 \right|=\left\{ \begin{align}

& x-1,\text{ }x\ge 1 \\

& -\left( x-1 \right),\text{ }x\le 1 \\

\end{align} \right.\]

So, we can rewrite the function as

\[f\left( x \right)=\left\{ \begin{align}

& -(x+1)-\left( x-1 \right),\text{ }x\le -1 \\

& \left( x+1 \right)-\left( x-1 \right),\text{ -1}\le \text{ }x\le 1 \\

& \left( x+1 \right)+\left( x-1 \right),\text{ }x\ge 1 \\

\end{align} \right.\]

Now, we can see there are two critical points i.e. \[x=-1\]and \[x=1\].

We will check if the function is differentiable at critical points of the function .

A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].

We know , the left hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].

Now , we will check the differentiability of the function at \[x=-1\].

The right-hand derivative of the function at \[x=-1\]is given by

\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1+h \right)-f\left( -1 \right)}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( -1+h+1 \right)-\left( -1+h-1 \right)-\left( 2 \right)}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h-\left( -2+h \right)-\left( 2 \right)}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2-h-2}{h}=0\]

Now , the left-hand derivative of \[f\left( x \right)\]at \[x=-1\]is given as

\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1-h \right)-f\left( -1 \right)}{-h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\left( -1-h+1 \right)-\left( -1-h-1 \right)-2}{-h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2+h-2}{-h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{-h}=-2\]

Clearly , the left-hand derivative of the function at \[x=-1\] is not equal to the right hand derivative of the function at \[x=-1\].

So , the function is not differentiable at \[x=-1\].

Now, we will check the differentiability of \[f\left( x \right)\] at \[x=1\]

The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by

\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-h+1 \right)-\left( 1-h-1 \right)-2}{-h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h+h-2}{-h}=0\]

Now , the right-hand derivative of \[f\left( x \right)\]at \[x=1\] is given by

\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1+h+1 \right)+\left( 1+h-1 \right)-\left( 2 \right)}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2+h+h-2}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{h}=2\]

Clearly, \[{{L}^{'}}\ne {{R}^{'}}\], i.e. left-hand derivative of the function at \[x=1\] is not equal to right hand derivative of the function at \[x=1\]. So , the function \[f\left( x \right)\]is not differentiable at \[x=1\].

So , the number of points at which the function is not differentiable is \[2\]

Answer is (a)

Note: A function is said to be differentiable at a point if the left-hand derivative of the function at that point is equal to the right-hand derivative of the function at that point.

The given function is \[f\left( x \right)=\left| x+1 \right|+\left| x-1 \right|\]

We know,

\[\left| x+a \right|=\left\{ \begin{align}

& x+a,x\ge -a \\

& -(x+a),x\le -a \\

\end{align} \right.\]

So , \[\left| x+1 \right|=\left\{ \begin{align}

& x+1,\text{ }x\ge -1 \\

& -\left( x+1 \right),\text{ }x\le -1 \\

\end{align} \right.\]

and \[\left| x-1 \right|=\left\{ \begin{align}

& x-1,\text{ }x\ge 1 \\

& -\left( x-1 \right),\text{ }x\le 1 \\

\end{align} \right.\]

So, we can rewrite the function as

\[f\left( x \right)=\left\{ \begin{align}

& -(x+1)-\left( x-1 \right),\text{ }x\le -1 \\

& \left( x+1 \right)-\left( x-1 \right),\text{ -1}\le \text{ }x\le 1 \\

& \left( x+1 \right)+\left( x-1 \right),\text{ }x\ge 1 \\

\end{align} \right.\]

Now, we can see there are two critical points i.e. \[x=-1\]and \[x=1\].

We will check if the function is differentiable at critical points of the function .

A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].

We know , the left hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].

Now , we will check the differentiability of the function at \[x=-1\].

The right-hand derivative of the function at \[x=-1\]is given by

\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1+h \right)-f\left( -1 \right)}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( -1+h+1 \right)-\left( -1+h-1 \right)-\left( 2 \right)}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h-\left( -2+h \right)-\left( 2 \right)}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2-h-2}{h}=0\]

Now , the left-hand derivative of \[f\left( x \right)\]at \[x=-1\]is given as

\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1-h \right)-f\left( -1 \right)}{-h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\left( -1-h+1 \right)-\left( -1-h-1 \right)-2}{-h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2+h-2}{-h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{-h}=-2\]

Clearly , the left-hand derivative of the function at \[x=-1\] is not equal to the right hand derivative of the function at \[x=-1\].

So , the function is not differentiable at \[x=-1\].

Now, we will check the differentiability of \[f\left( x \right)\] at \[x=1\]

The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by

\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-h+1 \right)-\left( 1-h-1 \right)-2}{-h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h+h-2}{-h}=0\]

Now , the right-hand derivative of \[f\left( x \right)\]at \[x=1\] is given by

\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1+h+1 \right)+\left( 1+h-1 \right)-\left( 2 \right)}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2+h+h-2}{h}\]

\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{h}=2\]

Clearly, \[{{L}^{'}}\ne {{R}^{'}}\], i.e. left-hand derivative of the function at \[x=1\] is not equal to right hand derivative of the function at \[x=1\]. So , the function \[f\left( x \right)\]is not differentiable at \[x=1\].

So , the number of points at which the function is not differentiable is \[2\]

Answer is (a)

Note: A function is said to be differentiable at a point if the left-hand derivative of the function at that point is equal to the right-hand derivative of the function at that point.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?