The number of points at which the function \[f\left( x \right)=\left| x+1 \right|+\left| x-1 \right|\] is not differentiable is:
(a) \[2\]
(b) \[1\]
(c) \[0\]
(d) infinite
Answer
Verified
507.6k+ views
Hint: A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
The given function is \[f\left( x \right)=\left| x+1 \right|+\left| x-1 \right|\]
We know,
\[\left| x+a \right|=\left\{ \begin{align}
& x+a,x\ge -a \\
& -(x+a),x\le -a \\
\end{align} \right.\]
So , \[\left| x+1 \right|=\left\{ \begin{align}
& x+1,\text{ }x\ge -1 \\
& -\left( x+1 \right),\text{ }x\le -1 \\
\end{align} \right.\]
and \[\left| x-1 \right|=\left\{ \begin{align}
& x-1,\text{ }x\ge 1 \\
& -\left( x-1 \right),\text{ }x\le 1 \\
\end{align} \right.\]
So, we can rewrite the function as
\[f\left( x \right)=\left\{ \begin{align}
& -(x+1)-\left( x-1 \right),\text{ }x\le -1 \\
& \left( x+1 \right)-\left( x-1 \right),\text{ -1}\le \text{ }x\le 1 \\
& \left( x+1 \right)+\left( x-1 \right),\text{ }x\ge 1 \\
\end{align} \right.\]
Now, we can see there are two critical points i.e. \[x=-1\]and \[x=1\].
We will check if the function is differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
Now , we will check the differentiability of the function at \[x=-1\].
The right-hand derivative of the function at \[x=-1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1+h \right)-f\left( -1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( -1+h+1 \right)-\left( -1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h-\left( -2+h \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2-h-2}{h}=0\]
Now , the left-hand derivative of \[f\left( x \right)\]at \[x=-1\]is given as
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1-h \right)-f\left( -1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\left( -1-h+1 \right)-\left( -1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2+h-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{-h}=-2\]
Clearly , the left-hand derivative of the function at \[x=-1\] is not equal to the right hand derivative of the function at \[x=-1\].
So , the function is not differentiable at \[x=-1\].
Now, we will check the differentiability of \[f\left( x \right)\] at \[x=1\]
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-h+1 \right)-\left( 1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h+h-2}{-h}=0\]
Now , the right-hand derivative of \[f\left( x \right)\]at \[x=1\] is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1+h+1 \right)+\left( 1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2+h+h-2}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{h}=2\]
Clearly, \[{{L}^{'}}\ne {{R}^{'}}\], i.e. left-hand derivative of the function at \[x=1\] is not equal to right hand derivative of the function at \[x=1\]. So , the function \[f\left( x \right)\]is not differentiable at \[x=1\].
So , the number of points at which the function is not differentiable is \[2\]
Answer is (a)
Note: A function is said to be differentiable at a point if the left-hand derivative of the function at that point is equal to the right-hand derivative of the function at that point.
The given function is \[f\left( x \right)=\left| x+1 \right|+\left| x-1 \right|\]
We know,
\[\left| x+a \right|=\left\{ \begin{align}
& x+a,x\ge -a \\
& -(x+a),x\le -a \\
\end{align} \right.\]
So , \[\left| x+1 \right|=\left\{ \begin{align}
& x+1,\text{ }x\ge -1 \\
& -\left( x+1 \right),\text{ }x\le -1 \\
\end{align} \right.\]
and \[\left| x-1 \right|=\left\{ \begin{align}
& x-1,\text{ }x\ge 1 \\
& -\left( x-1 \right),\text{ }x\le 1 \\
\end{align} \right.\]
So, we can rewrite the function as
\[f\left( x \right)=\left\{ \begin{align}
& -(x+1)-\left( x-1 \right),\text{ }x\le -1 \\
& \left( x+1 \right)-\left( x-1 \right),\text{ -1}\le \text{ }x\le 1 \\
& \left( x+1 \right)+\left( x-1 \right),\text{ }x\ge 1 \\
\end{align} \right.\]
Now, we can see there are two critical points i.e. \[x=-1\]and \[x=1\].
We will check if the function is differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
Now , we will check the differentiability of the function at \[x=-1\].
The right-hand derivative of the function at \[x=-1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1+h \right)-f\left( -1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( -1+h+1 \right)-\left( -1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h-\left( -2+h \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2-h-2}{h}=0\]
Now , the left-hand derivative of \[f\left( x \right)\]at \[x=-1\]is given as
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1-h \right)-f\left( -1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\left( -1-h+1 \right)-\left( -1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2+h-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{-h}=-2\]
Clearly , the left-hand derivative of the function at \[x=-1\] is not equal to the right hand derivative of the function at \[x=-1\].
So , the function is not differentiable at \[x=-1\].
Now, we will check the differentiability of \[f\left( x \right)\] at \[x=1\]
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-h+1 \right)-\left( 1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h+h-2}{-h}=0\]
Now , the right-hand derivative of \[f\left( x \right)\]at \[x=1\] is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1+h+1 \right)+\left( 1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2+h+h-2}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{h}=2\]
Clearly, \[{{L}^{'}}\ne {{R}^{'}}\], i.e. left-hand derivative of the function at \[x=1\] is not equal to right hand derivative of the function at \[x=1\]. So , the function \[f\left( x \right)\]is not differentiable at \[x=1\].
So , the number of points at which the function is not differentiable is \[2\]
Answer is (a)
Note: A function is said to be differentiable at a point if the left-hand derivative of the function at that point is equal to the right-hand derivative of the function at that point.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE
How much time does it take to bleed after eating p class 12 biology CBSE