Answer
Verified
474.6k+ views
Hint: A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
The given function is \[f\left( x \right)=\left| x+1 \right|+\left| x-1 \right|\]
We know,
\[\left| x+a \right|=\left\{ \begin{align}
& x+a,x\ge -a \\
& -(x+a),x\le -a \\
\end{align} \right.\]
So , \[\left| x+1 \right|=\left\{ \begin{align}
& x+1,\text{ }x\ge -1 \\
& -\left( x+1 \right),\text{ }x\le -1 \\
\end{align} \right.\]
and \[\left| x-1 \right|=\left\{ \begin{align}
& x-1,\text{ }x\ge 1 \\
& -\left( x-1 \right),\text{ }x\le 1 \\
\end{align} \right.\]
So, we can rewrite the function as
\[f\left( x \right)=\left\{ \begin{align}
& -(x+1)-\left( x-1 \right),\text{ }x\le -1 \\
& \left( x+1 \right)-\left( x-1 \right),\text{ -1}\le \text{ }x\le 1 \\
& \left( x+1 \right)+\left( x-1 \right),\text{ }x\ge 1 \\
\end{align} \right.\]
Now, we can see there are two critical points i.e. \[x=-1\]and \[x=1\].
We will check if the function is differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
Now , we will check the differentiability of the function at \[x=-1\].
The right-hand derivative of the function at \[x=-1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1+h \right)-f\left( -1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( -1+h+1 \right)-\left( -1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h-\left( -2+h \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2-h-2}{h}=0\]
Now , the left-hand derivative of \[f\left( x \right)\]at \[x=-1\]is given as
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1-h \right)-f\left( -1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\left( -1-h+1 \right)-\left( -1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2+h-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{-h}=-2\]
Clearly , the left-hand derivative of the function at \[x=-1\] is not equal to the right hand derivative of the function at \[x=-1\].
So , the function is not differentiable at \[x=-1\].
Now, we will check the differentiability of \[f\left( x \right)\] at \[x=1\]
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-h+1 \right)-\left( 1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h+h-2}{-h}=0\]
Now , the right-hand derivative of \[f\left( x \right)\]at \[x=1\] is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1+h+1 \right)+\left( 1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2+h+h-2}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{h}=2\]
Clearly, \[{{L}^{'}}\ne {{R}^{'}}\], i.e. left-hand derivative of the function at \[x=1\] is not equal to right hand derivative of the function at \[x=1\]. So , the function \[f\left( x \right)\]is not differentiable at \[x=1\].
So , the number of points at which the function is not differentiable is \[2\]
Answer is (a)
Note: A function is said to be differentiable at a point if the left-hand derivative of the function at that point is equal to the right-hand derivative of the function at that point.
The given function is \[f\left( x \right)=\left| x+1 \right|+\left| x-1 \right|\]
We know,
\[\left| x+a \right|=\left\{ \begin{align}
& x+a,x\ge -a \\
& -(x+a),x\le -a \\
\end{align} \right.\]
So , \[\left| x+1 \right|=\left\{ \begin{align}
& x+1,\text{ }x\ge -1 \\
& -\left( x+1 \right),\text{ }x\le -1 \\
\end{align} \right.\]
and \[\left| x-1 \right|=\left\{ \begin{align}
& x-1,\text{ }x\ge 1 \\
& -\left( x-1 \right),\text{ }x\le 1 \\
\end{align} \right.\]
So, we can rewrite the function as
\[f\left( x \right)=\left\{ \begin{align}
& -(x+1)-\left( x-1 \right),\text{ }x\le -1 \\
& \left( x+1 \right)-\left( x-1 \right),\text{ -1}\le \text{ }x\le 1 \\
& \left( x+1 \right)+\left( x-1 \right),\text{ }x\ge 1 \\
\end{align} \right.\]
Now, we can see there are two critical points i.e. \[x=-1\]and \[x=1\].
We will check if the function is differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
Now , we will check the differentiability of the function at \[x=-1\].
The right-hand derivative of the function at \[x=-1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1+h \right)-f\left( -1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( -1+h+1 \right)-\left( -1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h-\left( -2+h \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2-h-2}{h}=0\]
Now , the left-hand derivative of \[f\left( x \right)\]at \[x=-1\]is given as
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1-h \right)-f\left( -1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\left( -1-h+1 \right)-\left( -1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2+h-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{-h}=-2\]
Clearly , the left-hand derivative of the function at \[x=-1\] is not equal to the right hand derivative of the function at \[x=-1\].
So , the function is not differentiable at \[x=-1\].
Now, we will check the differentiability of \[f\left( x \right)\] at \[x=1\]
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-h+1 \right)-\left( 1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h+h-2}{-h}=0\]
Now , the right-hand derivative of \[f\left( x \right)\]at \[x=1\] is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1+h+1 \right)+\left( 1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2+h+h-2}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{h}=2\]
Clearly, \[{{L}^{'}}\ne {{R}^{'}}\], i.e. left-hand derivative of the function at \[x=1\] is not equal to right hand derivative of the function at \[x=1\]. So , the function \[f\left( x \right)\]is not differentiable at \[x=1\].
So , the number of points at which the function is not differentiable is \[2\]
Answer is (a)
Note: A function is said to be differentiable at a point if the left-hand derivative of the function at that point is equal to the right-hand derivative of the function at that point.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths