The monthly incomes of Aryan and Babban are in the ratio \[3:4\] and their monthly expenditures are in the ratio \[5:7\]. If each saves \[{\text{Rs}}.15000\]per month, find their monthly incomes using matrix method. This problem reflects which value?
Last updated date: 21st Mar 2023
•
Total views: 214.9k
•
Views today: 5.93k
Answer
214.9k+ views
Hint: Convert the rations into a system of equations of linear equations and then solve using Gaussian Elimination method.
Let the incomes of Aryan and Babban be $3x$ and $4x$ respectively.
In the same way, their expenditures would be $5y$ and $7y$ respectively.
Since Aryan and Babban saves \[{\text{Rs}}.15000\] , we get
$
3x - 5y = 15000.........................................\left( 1 \right) \\
4x - 7y = 15000........................................\left( 2 \right) \\
$
These are the systems of linear equations in the form $AX = B$, which can be solved by using Gaussian Elimination method.
So, $A = \left[ {\begin{array}{*{20}{c}}
3&{ - 5} \\
4&{ - 7}
\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}
{15000} \\
{15000}
\end{array}} \right]{\text{ and }}X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]$
This can be written in matrix form as
$\left[ {\begin{array}{*{20}{c}}
3&{ - 5} \\
4&{ - 7}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{15000} \\
{15000}
\end{array}} \right]$
Applying the row operation ${R_2} \to {R_2} - \dfrac{4}{3}{R_1}$
We get $\left[ {\begin{array}{*{20}{c}}
3&{ - 5} \\
0&{ - \dfrac{1}{3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{15000} \\
{ - 5000}
\end{array}} \right]$
Applying the row operation ${R_2} \to {R_2} \times - 3$
We get $\left[ {\begin{array}{*{20}{c}}
3&{ - 5} \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{15000} \\
{15000}
\end{array}} \right]$
Applying the row operation ${R_1} \to {R_1} + 5{R_2}$
We get $\left[ {\begin{array}{*{20}{c}}
3&0 \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{90000} \\
{15000}
\end{array}} \right]$
Applying the row operation ${R_1} \to {R_1} \times \dfrac{1}{3}$
We get $\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{30000} \\
{15000}
\end{array}} \right]$
Converting back into system of equations we have
$
x = 30000 \\
y = 15000 \\
$
Thus, the income of Aryan is $3x = 3 \times 30000 = 90000$ and the income of Babban is $4x = 4 \times 30000 = 120000$.
Hence incomes of Aryan and Babban are ${\text{Rs}}.90,000{\text{ and Rs}}.1,20,000$ respectively.
The value of the problem is Aryan is more interested in saving money than Babban. So, one must save money, no matter how much one earns.
Note: In this problem the matrix method is used to solve the system of $n$ linear equations in $n$ unknowns. Some types of matrix methods to solve the system of linear equations are Gaussian Elimination method, Inverse matrix method and Cramer's rule. Here we have used the Gaussian Elimination method.
Let the incomes of Aryan and Babban be $3x$ and $4x$ respectively.
In the same way, their expenditures would be $5y$ and $7y$ respectively.
Since Aryan and Babban saves \[{\text{Rs}}.15000\] , we get
$
3x - 5y = 15000.........................................\left( 1 \right) \\
4x - 7y = 15000........................................\left( 2 \right) \\
$
These are the systems of linear equations in the form $AX = B$, which can be solved by using Gaussian Elimination method.
So, $A = \left[ {\begin{array}{*{20}{c}}
3&{ - 5} \\
4&{ - 7}
\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}
{15000} \\
{15000}
\end{array}} \right]{\text{ and }}X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]$
This can be written in matrix form as
$\left[ {\begin{array}{*{20}{c}}
3&{ - 5} \\
4&{ - 7}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{15000} \\
{15000}
\end{array}} \right]$
Applying the row operation ${R_2} \to {R_2} - \dfrac{4}{3}{R_1}$
We get $\left[ {\begin{array}{*{20}{c}}
3&{ - 5} \\
0&{ - \dfrac{1}{3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{15000} \\
{ - 5000}
\end{array}} \right]$
Applying the row operation ${R_2} \to {R_2} \times - 3$
We get $\left[ {\begin{array}{*{20}{c}}
3&{ - 5} \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{15000} \\
{15000}
\end{array}} \right]$
Applying the row operation ${R_1} \to {R_1} + 5{R_2}$
We get $\left[ {\begin{array}{*{20}{c}}
3&0 \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{90000} \\
{15000}
\end{array}} \right]$
Applying the row operation ${R_1} \to {R_1} \times \dfrac{1}{3}$
We get $\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{30000} \\
{15000}
\end{array}} \right]$
Converting back into system of equations we have
$
x = 30000 \\
y = 15000 \\
$
Thus, the income of Aryan is $3x = 3 \times 30000 = 90000$ and the income of Babban is $4x = 4 \times 30000 = 120000$.
Hence incomes of Aryan and Babban are ${\text{Rs}}.90,000{\text{ and Rs}}.1,20,000$ respectively.
The value of the problem is Aryan is more interested in saving money than Babban. So, one must save money, no matter how much one earns.
Note: In this problem the matrix method is used to solve the system of $n$ linear equations in $n$ unknowns. Some types of matrix methods to solve the system of linear equations are Gaussian Elimination method, Inverse matrix method and Cramer's rule. Here we have used the Gaussian Elimination method.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
