
The mole fraction of water in $20%$ (wt./wt.) aqueous solution of ${{\text{H}}_{2}}{{\text{O}}_{2}}$is:\[\]
A. $\dfrac{77}{68}$
B. $\dfrac{68}{77}$
C. $\dfrac{20}{80}$
D. $\dfrac{80}{20}$
Answer
556.2k+ views
Hint: Mole fraction can be defined as the number of molecules of a particular component present in a mixture divided by the total number of moles present in the given mixture. The mole fraction is represented by \[X\].
Formula used:
${{\text{x}}_{\text{A}}}=\dfrac{{{\text{n}}_{\text{A}}}}{{{\text{n}}_{\text{A}}}+{{\text{n}}_{\text{B}}}}$, \[\text{n}=\dfrac{\text{Given}\text{.wt}\text{.or}%}{\text{Molarmass}}\]
\[{{\text{x}}_{\text{A}}}\]= mole fraction of A
\[{{\text{n}}_{\text{A}}}\] = moles for A
\[{{\text{n}}_{\text{B}}}\] = moles for B
Complete step by step answer:
Moles for water be\[{{\text{n}}_{\text{A}}}\] let say.
So,\[{{\text{n}}_{\text{A}}}=\dfrac{80}{\text{Molar mass of water}}\] (If${{\text{H}}_{2}}{{\text{O}}_{2}}$is \[20%\]then water is \[100-20=80%\])
Molar mass of water \[\left( {{\text{H}}_{2}}\text{O} \right)\]= $2\times 1$ (for hydrogen)\[+16\] (for 0)
\[=2+16\]
\[=18\]
So, \[{{\text{n}}_{\text{A}}}=80/18\text{ }\]
\[=40/9\]
Moles for \[{{\text{H}}_{2}}{{\text{O}}_{2}}\] be \[{{n}_{B}}=\dfrac{20}{\text{Molar mass of }{{\text{H}}_{2}}{{\text{O}}_{2}}}\]
Molar mass of \[{{\text{H}}_{2}}{{\text{O}}_{2}}\]= \[2\times 1\] (for hydrogen) \[+\text{ }2\times 16\] (for oxygen)
\[=2+32\]
\[=\text{ }34\]
So, \[{{\text{n}}_{\text{B}}}=\dfrac{20}{34}=\dfrac{10}{17}\]
So, Mole fraction of water
${{\text{x}}_{\text{A}}}=\dfrac{{{\text{n}}_{\text{A}}}}{{{\text{n}}_{\text{A}}}+{{\text{n}}_{\text{B}}}}\text{ }$
$=\dfrac{\dfrac{40}{9}}{\dfrac{40}{9}+\dfrac{10}{7}}$
$=\dfrac{\dfrac{40}{9}}{\dfrac{680+90}{153}}=\dfrac{\dfrac{40}{9}}{\dfrac{770}{153}}=\dfrac{40\times 153}{9\times 770}=\dfrac{68}{77}$
So, mole fraction of water in \[20%\] aqueous solution of \[{{\text{H}}_{2}}{{\text{O}}_{2}}\]is\[\dfrac{68}{77}\].
Here, \[20%\]aqueous \[{{\text{H}}_{2}}{{\text{O}}_{2}}\] solution means 20 gm \[{{\text{H}}_{2}}{{\text{O}}_{2}}\]in 100 gm solution and the rest 80gm water.
So, the correct answer is “Option B”.
Additional Information:
Hydrogen peroxide\[\left( {{\mathbf{H}}_{\mathbf{2}}}{{\mathbf{O}}_{\mathbf{2}}} \right)\]: It is a pale blue liquid which is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic. Its molar mass is\[34\cdot 0147\text{ g/mol}\]. Hydrogen peroxide is usually not dangerous. It can create a lot of foam though. Household hydrogen peroxide can be irritating to eyes and skin. Solutions containing more than about 8 percent hydrogen peroxide are corrosive to the skin. It decomposes into water and oxygen upon heating or in the presence of numerous substances, particularly salts of metals like iron, copper, manganese, nickel or chromium.
Note:
Learn how to find the moles and the mole fraction. One should know how to find the molar masses of various compounds which requires knowledge for the atomic number which can be gained through the periodic Table.
Mole fraction is defined as the unit of amount of constituents divided by the total amount of all constituents in a mixture.
It decomposes into water and oxygen upon heating or in the presence of numerous substances, particularly salts of metals like iron, copper, manganese, nickel or chromium.
Formula used:
${{\text{x}}_{\text{A}}}=\dfrac{{{\text{n}}_{\text{A}}}}{{{\text{n}}_{\text{A}}}+{{\text{n}}_{\text{B}}}}$, \[\text{n}=\dfrac{\text{Given}\text{.wt}\text{.or}%}{\text{Molarmass}}\]
\[{{\text{x}}_{\text{A}}}\]= mole fraction of A
\[{{\text{n}}_{\text{A}}}\] = moles for A
\[{{\text{n}}_{\text{B}}}\] = moles for B
Complete step by step answer:
Moles for water be\[{{\text{n}}_{\text{A}}}\] let say.
So,\[{{\text{n}}_{\text{A}}}=\dfrac{80}{\text{Molar mass of water}}\] (If${{\text{H}}_{2}}{{\text{O}}_{2}}$is \[20%\]then water is \[100-20=80%\])
Molar mass of water \[\left( {{\text{H}}_{2}}\text{O} \right)\]= $2\times 1$ (for hydrogen)\[+16\] (for 0)
\[=2+16\]
\[=18\]
So, \[{{\text{n}}_{\text{A}}}=80/18\text{ }\]
\[=40/9\]
Moles for \[{{\text{H}}_{2}}{{\text{O}}_{2}}\] be \[{{n}_{B}}=\dfrac{20}{\text{Molar mass of }{{\text{H}}_{2}}{{\text{O}}_{2}}}\]
Molar mass of \[{{\text{H}}_{2}}{{\text{O}}_{2}}\]= \[2\times 1\] (for hydrogen) \[+\text{ }2\times 16\] (for oxygen)
\[=2+32\]
\[=\text{ }34\]
So, \[{{\text{n}}_{\text{B}}}=\dfrac{20}{34}=\dfrac{10}{17}\]
So, Mole fraction of water
${{\text{x}}_{\text{A}}}=\dfrac{{{\text{n}}_{\text{A}}}}{{{\text{n}}_{\text{A}}}+{{\text{n}}_{\text{B}}}}\text{ }$
$=\dfrac{\dfrac{40}{9}}{\dfrac{40}{9}+\dfrac{10}{7}}$
$=\dfrac{\dfrac{40}{9}}{\dfrac{680+90}{153}}=\dfrac{\dfrac{40}{9}}{\dfrac{770}{153}}=\dfrac{40\times 153}{9\times 770}=\dfrac{68}{77}$
So, mole fraction of water in \[20%\] aqueous solution of \[{{\text{H}}_{2}}{{\text{O}}_{2}}\]is\[\dfrac{68}{77}\].
Here, \[20%\]aqueous \[{{\text{H}}_{2}}{{\text{O}}_{2}}\] solution means 20 gm \[{{\text{H}}_{2}}{{\text{O}}_{2}}\]in 100 gm solution and the rest 80gm water.
So, the correct answer is “Option B”.
Additional Information:
Hydrogen peroxide\[\left( {{\mathbf{H}}_{\mathbf{2}}}{{\mathbf{O}}_{\mathbf{2}}} \right)\]: It is a pale blue liquid which is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic. Its molar mass is\[34\cdot 0147\text{ g/mol}\]. Hydrogen peroxide is usually not dangerous. It can create a lot of foam though. Household hydrogen peroxide can be irritating to eyes and skin. Solutions containing more than about 8 percent hydrogen peroxide are corrosive to the skin. It decomposes into water and oxygen upon heating or in the presence of numerous substances, particularly salts of metals like iron, copper, manganese, nickel or chromium.
Note:
Learn how to find the moles and the mole fraction. One should know how to find the molar masses of various compounds which requires knowledge for the atomic number which can be gained through the periodic Table.
Mole fraction is defined as the unit of amount of constituents divided by the total amount of all constituents in a mixture.
It decomposes into water and oxygen upon heating or in the presence of numerous substances, particularly salts of metals like iron, copper, manganese, nickel or chromium.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

Sketch the electric field lines in case of an electric class 12 physics CBSE

