
The mirror image of the directrix of the parabola ${y^2} = 4(x + 1)$ in the line mirror $x + 2y = 3$ is:
1) x=-2
2) 4x-3y=16
3) 3x-4y+16=0
4) None of these
Answer
540k+ views
Hint: The above problem is based on the Parabola which has its standard equation as;
$y - k = 4a(x - h)$
where a is the distance from the vertex to focus, and the above equation is said to be parallel to x- axis.
Parabola is a plane curve which is approximately U shaped. It fits several other superficially different mathematical descriptions.
Using the above parabolic equation we will solve the given equation.
Complete step by step answer:
Let's define parabola in more detail and then we will do the calculation part of the problem.
Parabola involves a point(focus) and a line (directrix). Directrix is the line which is perpendicular to the axis of symmetry of a parabola and does not touch the parabola. Focus of a parabola is a fixed point on the interior of a parabola used in the formal definition of the centre.
Directrix of ${y^2} = 4(x + 1)$ is x= -2
Any point on x = -2 is (-2,k)
Now, mirror image (x, y) of (-2,k) in the line x + 2y = 3 is given by
$ \Rightarrow \dfrac{{x + 2}}{1} = \dfrac{{y - k}}{2} = - 2\left( {\dfrac{{ - 2 + 2k - 3}}{5}} \right)$ ..................1(Equation of the line which is mirror image of both x and y coordinates)
$ \Rightarrow x = \dfrac{{10 - 4k}}{5} - 2$ (for x coordinates)
$ \Rightarrow x = \dfrac{{ - 4k}}{5}$ .....................2
or
$ \Rightarrow k = \dfrac{{ - 5x}}{4}$ ..............2
Also, $y = \dfrac{{20 - 3k}}{5}$ ....................3(for y coordinates)
or
$ \Rightarrow y = 4 - \dfrac{{3k}}{5}$ ................3
From equation 2 and 3 we have substituted the value of x from equation 3.
$ \Rightarrow y = 4 + \left( {\dfrac{3}{5}} \right)\dfrac{{5x}}{4}$ ..............4
$ \Rightarrow 4y = 16 + 3x$
$ \Rightarrow 3x - 4y + 16 = 0$ (This is the required equation of the mirror image)
So, the correct answer is Option 3.
Note: Parabola has many applications such as a highway underpass is parabolic in shape, which is symmetric about a vertical line known as the axis of symmetry. Highway underpass is also parabolic in shape, the railway bridge over a road is in the shape of a parabola symmetric at the centre.
$y - k = 4a(x - h)$
where a is the distance from the vertex to focus, and the above equation is said to be parallel to x- axis.
Parabola is a plane curve which is approximately U shaped. It fits several other superficially different mathematical descriptions.
Using the above parabolic equation we will solve the given equation.
Complete step by step answer:
Let's define parabola in more detail and then we will do the calculation part of the problem.
Parabola involves a point(focus) and a line (directrix). Directrix is the line which is perpendicular to the axis of symmetry of a parabola and does not touch the parabola. Focus of a parabola is a fixed point on the interior of a parabola used in the formal definition of the centre.
Directrix of ${y^2} = 4(x + 1)$ is x= -2
Any point on x = -2 is (-2,k)
Now, mirror image (x, y) of (-2,k) in the line x + 2y = 3 is given by
$ \Rightarrow \dfrac{{x + 2}}{1} = \dfrac{{y - k}}{2} = - 2\left( {\dfrac{{ - 2 + 2k - 3}}{5}} \right)$ ..................1(Equation of the line which is mirror image of both x and y coordinates)
$ \Rightarrow x = \dfrac{{10 - 4k}}{5} - 2$ (for x coordinates)
$ \Rightarrow x = \dfrac{{ - 4k}}{5}$ .....................2
or
$ \Rightarrow k = \dfrac{{ - 5x}}{4}$ ..............2
Also, $y = \dfrac{{20 - 3k}}{5}$ ....................3(for y coordinates)
or
$ \Rightarrow y = 4 - \dfrac{{3k}}{5}$ ................3
From equation 2 and 3 we have substituted the value of x from equation 3.
$ \Rightarrow y = 4 + \left( {\dfrac{3}{5}} \right)\dfrac{{5x}}{4}$ ..............4
$ \Rightarrow 4y = 16 + 3x$
$ \Rightarrow 3x - 4y + 16 = 0$ (This is the required equation of the mirror image)
So, the correct answer is Option 3.
Note: Parabola has many applications such as a highway underpass is parabolic in shape, which is symmetric about a vertical line known as the axis of symmetry. Highway underpass is also parabolic in shape, the railway bridge over a road is in the shape of a parabola symmetric at the centre.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

