
The locus of the centers of the circles which touch the two circle ${{x}^{2}}+{{y}^{2}}={{a}^{2}}$and${{x}^{2}}+{{y}^{2}}=4ax$ externally is.
- A. \[12{{x}^{2}}-4{{y}^{2}}-24ax+9{{a}^{2}}=0\]
B. \[12{{x}^{2}}+4{{y}^{2}}-24ax+9{{a}^{2}}=0\]
C. \[12{{x}^{2}}-4{{y}^{2}}+24ax+9{{a}^{2}}=0\]
D. \[12{{x}^{2}}+4{{y}^{2}}+24ax+9{{a}^{2}}=0\]
- A. \[12{{x}^{2}}-4{{y}^{2}}-24ax+9{{a}^{2}}=0\]
Answer
607.2k+ views
Hint: Take the equations and write their centers and radius. Then consider the center of a circle in which you want to find the locus of the center. Then equate it and solve it. You will get the answer.
Complete step-by-step answer:
A locus is the set of all points (usually forming a curve or surface) satisfying some condition. For example, the locus of points in the plane equidistant from a given point is a circle, and the set of points in three-space equidistant from a given point is a sphere.
A locus of points usually results in a curve or surface. For instance, in our hiking example, the locus of points 5 miles from our starting point resulted in a curve that's a circle.
Now, how do we usually represent curves algebraically? If you're thinking we use an equation, you're exactly right.
Let $A$ and $B$ are the given two circles with radii ${{R}_{1}}$ and ${{R}_{2}}$ respectively and their centers are $F$ and $G$respectively.
Let $C$ and $D$ are variable circles so that each circle meets the given circles $A$ and $B$ externally.
Let ${{r}_{1}}$ be the radius of the circle $C$ and $P$ be its center. Let ${{r}_{2}}$ be the radius of the circle $D$ and $Q$ be its center.
$PF={{R}_{1}}+{{r}_{1}},PG={{R}_{2}}+{{r}_{1}}$
Now subtracting above both we get,
$PF-PG={{R}_{1}}-{{R}_{2}}$
Also $QF={{R}_{1}}+{{r}_{2}},QG={{R}_{2}}+{{r}_{2}}$
Again subtracting we get,
$QF-QG={{R}_{1}}-{{R}_{2}}$
Hence locus of centers of touching circles is a set of points so that the difference between the distances from two given fixed points ( here $F$and $G$ ) to the point in locus is constant.
This locus is hyperbola and the fixed points$F$and $G$ (Centers of given circles ) are foci of hyperbola.
Now we have given ${{x}^{2}}+{{y}^{2}}={{a}^{2}}$,
So let the center be${{C}_{1}}$,
${{C}_{1}}(0,0)$because we can see the coefficient of$x$and$y$is zero.
And radius ${{r}_{1}}=\sqrt{a}$.
Now again one equation is given that${{x}^{2}}+{{y}^{2}}=4ax$,
So let the center be${{C}_{2}}$,
${{C}_{2}}(2a,0)$because we can see a coefficient of$y$is zero.
And radius ${{r}_{2}}=\sqrt{{{g}^{2}}+{{f}^{2}}+{{c}^{2}}}=\sqrt{0+0+{{(2a)}^{2}}}=2a$.
Let the radius of the circle of which we want to find a locus be$r$.
And the center is$C(h,k)$.
So now using distance formula we get,
$\begin{align}
& r+a=\sqrt{{{h}^{2}}+{{(k-a)}^{2}}} \\
& r+2a=\sqrt{{{h}^{2}}+{{(k-2a)}^{2}}} \\
\end{align}$
Let${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$ be the variable circle.
Since it touches the given circle easily,
$\sqrt{{{(-g-0)}^{2}}+{{(-f-0)}^{2}}}=\sqrt{{{g}^{2}}+{{f}^{2}}-c}+a$ ...(1)
and, $\sqrt{{{(-g-2a)}^{2}}+{{(-f-0)}^{2}}}=\sqrt{{{g}^{2}}+{{f}^{2}}-c}+2a$ ...(2)
Subtracting (1) from (2), we get
$\sqrt{{{(g+2a)}^{2}}+{{f}^{2}}}=\sqrt{{{g}^{2}}+{{f}^{2}}}+a$
Squaring both sides, we get
${{(g+2a)}^{2}}+{{f}^{2}}={{(\sqrt{{{g}^{2}}+{{f}^{2}}}+a)}^{2}}$
$\begin{align}
& {{g}^{2}}+4ga+4{{a}^{2}}+{{f}^{2}}={{g}^{2}}+{{f}^{2}}+2a\sqrt{{{g}^{2}}+{{f}^{2}}}+{{a}^{2}} \\
& 4ag+3{{a}^{2}}=2a\sqrt{{{g}^{2}}+{{f}^{2}}} \\
\end{align}$
Now divide the whole equation by $a$we get,
$4g+3a=2\sqrt{{{g}^{2}}+{{f}^{2}}}$
Now square both sides we get,
${{\left( 4g+3a \right)}^{2}}={{\left( 2\sqrt{{{g}^{2}}+{{f}^{2}}} \right)}^{2}}$
${{\left( (-4)(-g)+3a \right)}^{2}}=4\left( {{g}^{2}}+{{f}^{2}} \right)$
So the locus of the centre$(-g,-f)$is${{(-4x+3a)}^{2}}=4({{x}^{2}}+{{y}^{2}})$,
So simplifying above we get,
$\begin{align}
& 16{{x}^{2}}+9{{a}^{2}}-24ax=4{{x}^{2}}+4{{y}^{2}} \\
& 12{{x}^{2}}-4{{y}^{2}}-24ax+9{{a}^{2}}=0 \\
\end{align}$
So we get locus of the centre as\[12{{x}^{2}}-4{{y}^{2}}-24ax+9{{a}^{2}}=0\].
So the correct answer is an option(A).
Note: Read the question carefully. You should know the concept of locus of point and locus of the center. Don’t jumble yourself in transferring the equations. Most of the students make mistakes in minus signs, So avoid the mistake.
Complete step-by-step answer:
A locus is the set of all points (usually forming a curve or surface) satisfying some condition. For example, the locus of points in the plane equidistant from a given point is a circle, and the set of points in three-space equidistant from a given point is a sphere.
A locus of points usually results in a curve or surface. For instance, in our hiking example, the locus of points 5 miles from our starting point resulted in a curve that's a circle.
Now, how do we usually represent curves algebraically? If you're thinking we use an equation, you're exactly right.
Let $A$ and $B$ are the given two circles with radii ${{R}_{1}}$ and ${{R}_{2}}$ respectively and their centers are $F$ and $G$respectively.
Let $C$ and $D$ are variable circles so that each circle meets the given circles $A$ and $B$ externally.
Let ${{r}_{1}}$ be the radius of the circle $C$ and $P$ be its center. Let ${{r}_{2}}$ be the radius of the circle $D$ and $Q$ be its center.
$PF={{R}_{1}}+{{r}_{1}},PG={{R}_{2}}+{{r}_{1}}$
Now subtracting above both we get,
$PF-PG={{R}_{1}}-{{R}_{2}}$
Also $QF={{R}_{1}}+{{r}_{2}},QG={{R}_{2}}+{{r}_{2}}$
Again subtracting we get,
$QF-QG={{R}_{1}}-{{R}_{2}}$
Hence locus of centers of touching circles is a set of points so that the difference between the distances from two given fixed points ( here $F$and $G$ ) to the point in locus is constant.
This locus is hyperbola and the fixed points$F$and $G$ (Centers of given circles ) are foci of hyperbola.
Now we have given ${{x}^{2}}+{{y}^{2}}={{a}^{2}}$,
So let the center be${{C}_{1}}$,
${{C}_{1}}(0,0)$because we can see the coefficient of$x$and$y$is zero.
And radius ${{r}_{1}}=\sqrt{a}$.
Now again one equation is given that${{x}^{2}}+{{y}^{2}}=4ax$,
So let the center be${{C}_{2}}$,
${{C}_{2}}(2a,0)$because we can see a coefficient of$y$is zero.
And radius ${{r}_{2}}=\sqrt{{{g}^{2}}+{{f}^{2}}+{{c}^{2}}}=\sqrt{0+0+{{(2a)}^{2}}}=2a$.
Let the radius of the circle of which we want to find a locus be$r$.
And the center is$C(h,k)$.
So now using distance formula we get,
$\begin{align}
& r+a=\sqrt{{{h}^{2}}+{{(k-a)}^{2}}} \\
& r+2a=\sqrt{{{h}^{2}}+{{(k-2a)}^{2}}} \\
\end{align}$
Let${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$ be the variable circle.
Since it touches the given circle easily,
$\sqrt{{{(-g-0)}^{2}}+{{(-f-0)}^{2}}}=\sqrt{{{g}^{2}}+{{f}^{2}}-c}+a$ ...(1)
and, $\sqrt{{{(-g-2a)}^{2}}+{{(-f-0)}^{2}}}=\sqrt{{{g}^{2}}+{{f}^{2}}-c}+2a$ ...(2)
Subtracting (1) from (2), we get
$\sqrt{{{(g+2a)}^{2}}+{{f}^{2}}}=\sqrt{{{g}^{2}}+{{f}^{2}}}+a$
Squaring both sides, we get
${{(g+2a)}^{2}}+{{f}^{2}}={{(\sqrt{{{g}^{2}}+{{f}^{2}}}+a)}^{2}}$
$\begin{align}
& {{g}^{2}}+4ga+4{{a}^{2}}+{{f}^{2}}={{g}^{2}}+{{f}^{2}}+2a\sqrt{{{g}^{2}}+{{f}^{2}}}+{{a}^{2}} \\
& 4ag+3{{a}^{2}}=2a\sqrt{{{g}^{2}}+{{f}^{2}}} \\
\end{align}$
Now divide the whole equation by $a$we get,
$4g+3a=2\sqrt{{{g}^{2}}+{{f}^{2}}}$
Now square both sides we get,
${{\left( 4g+3a \right)}^{2}}={{\left( 2\sqrt{{{g}^{2}}+{{f}^{2}}} \right)}^{2}}$
${{\left( (-4)(-g)+3a \right)}^{2}}=4\left( {{g}^{2}}+{{f}^{2}} \right)$
So the locus of the centre$(-g,-f)$is${{(-4x+3a)}^{2}}=4({{x}^{2}}+{{y}^{2}})$,
So simplifying above we get,
$\begin{align}
& 16{{x}^{2}}+9{{a}^{2}}-24ax=4{{x}^{2}}+4{{y}^{2}} \\
& 12{{x}^{2}}-4{{y}^{2}}-24ax+9{{a}^{2}}=0 \\
\end{align}$
So we get locus of the centre as\[12{{x}^{2}}-4{{y}^{2}}-24ax+9{{a}^{2}}=0\].
So the correct answer is an option(A).
Note: Read the question carefully. You should know the concept of locus of point and locus of the center. Don’t jumble yourself in transferring the equations. Most of the students make mistakes in minus signs, So avoid the mistake.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

