The local maximum of \[{\text{y = }}{{\text{x}}^3} - 3{{\text{x}}^2} + 5\] is attained at
(a) ${\text{x = 0}}$ (C) ${\text{x = 1}}$
(b) ${\text{x = 2}}$ (D) ${\text{x = - 1}}$
Answer
387.6k+ views
Hint:Local maxima can be found by differentiating the given expression with respect to variable x. The Points where 1st order differential becomes zero are known as critical points. And the value of the function at that point will be either maxima or minima.
Here, given cubic curve
\[ \Rightarrow {\text{y = }}{{\text{x}}^3} - 3{{\text{x}}^2} + 5\]
On differentiating above equation
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^3} - 3{x^2} + 5} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^3}} \right) - 3\dfrac{d}{{dx}}\left( {{x^2}} \right) + \dfrac{d}{{dx}}\left( 5 \right)$
Differentiation of constant term is zero
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {3{x^2}} \right) - \left( {6x} \right) + \left( 0 \right)$
Now making 1st order differential equal to zero
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {3{x^2}} \right) - \left( {6x} \right) + \left( 0 \right) \Rightarrow 0$
$ \Rightarrow 3{x^2} - 6x = 0 \Rightarrow 3x\left( {x - 2} \right) = 0$
$ \Rightarrow x = 0,2$
There are two critical points 0 and 2. So to decide which one will be maxima or minima, find 2nd order differential of y
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {3{x^2} - 6x} \right)$
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(x - 1){\text{ (1)}}\]
We know that, by putting the values of critical points in the 2nd order differential.
\[{\text{if }}\dfrac{{{d^2}y}}{{d{x^2}}}\] is negative at $x = {x_1}$ then. ${x_1}$ Will be maxima
\[{\text{if }}\dfrac{{{d^2}y}}{{d{x^2}}}\] is positive at $x = {x_2}$ then. ${x_2}$ Will be minima
So using above result, on putting x = 0, in equation (1)
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(0 - 1){\text{ }}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\text{ - }}6 < 0{\text{ }}\]
So, here 2nd order differential comes negative which means at x= 0 will be local maxima
And on putting x=2,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(2 - 1){\text{ }}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\text{ }}6 > 0{\text{ }}\]
So, here 2nd order differential comes positive which means at x= 2 will be local minima
In question it was asked about maxima so option (a) is correct.
Note:-
In these types of questions, find the critical points and check the sign of the 2nd order derivative whether it is positive or negative.
Note : Alternative Method
We know that, where $\dfrac{{dy}}{{dx}}$ equals zero at a certain point, it means the slope of the tangent at that point is zero. So by finding the sign of $\dfrac{{dy}}{{dx}}$in the neighbourhood of that point, then we can comment on maxima or minima. If the sign of $\dfrac{{dy}}{{dx}}$changes from positive to negative, then at that point it will be maxima otherwise Minima.
So here at 0 it will be maxima.
Here, given cubic curve
\[ \Rightarrow {\text{y = }}{{\text{x}}^3} - 3{{\text{x}}^2} + 5\]
On differentiating above equation
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^3} - 3{x^2} + 5} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^3}} \right) - 3\dfrac{d}{{dx}}\left( {{x^2}} \right) + \dfrac{d}{{dx}}\left( 5 \right)$
Differentiation of constant term is zero
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {3{x^2}} \right) - \left( {6x} \right) + \left( 0 \right)$
Now making 1st order differential equal to zero
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {3{x^2}} \right) - \left( {6x} \right) + \left( 0 \right) \Rightarrow 0$
$ \Rightarrow 3{x^2} - 6x = 0 \Rightarrow 3x\left( {x - 2} \right) = 0$
$ \Rightarrow x = 0,2$
There are two critical points 0 and 2. So to decide which one will be maxima or minima, find 2nd order differential of y
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {3{x^2} - 6x} \right)$
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(x - 1){\text{ (1)}}\]
We know that, by putting the values of critical points in the 2nd order differential.
\[{\text{if }}\dfrac{{{d^2}y}}{{d{x^2}}}\] is negative at $x = {x_1}$ then. ${x_1}$ Will be maxima
\[{\text{if }}\dfrac{{{d^2}y}}{{d{x^2}}}\] is positive at $x = {x_2}$ then. ${x_2}$ Will be minima
So using above result, on putting x = 0, in equation (1)
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(0 - 1){\text{ }}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\text{ - }}6 < 0{\text{ }}\]
So, here 2nd order differential comes negative which means at x= 0 will be local maxima
And on putting x=2,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(2 - 1){\text{ }}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\text{ }}6 > 0{\text{ }}\]
So, here 2nd order differential comes positive which means at x= 2 will be local minima
In question it was asked about maxima so option (a) is correct.
Note:-
In these types of questions, find the critical points and check the sign of the 2nd order derivative whether it is positive or negative.
Note : Alternative Method
We know that, where $\dfrac{{dy}}{{dx}}$ equals zero at a certain point, it means the slope of the tangent at that point is zero. So by finding the sign of $\dfrac{{dy}}{{dx}}$in the neighbourhood of that point, then we can comment on maxima or minima. If the sign of $\dfrac{{dy}}{{dx}}$changes from positive to negative, then at that point it will be maxima otherwise Minima.

So here at 0 it will be maxima.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Elucidate the structure of fructose class 12 chemistry CBSE

What is 1 divided by 0 class 8 maths CBSE

Give 10 examples of unisexual and bisexual flowers

How do you define least count for Vernier Calipers class 12 physics CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Explain zero factorial class 11 maths CBSE
