
The line L has intercepts ‘a’ and ‘b’ on the coordinate axes. The coordinate axes are rotated through a fixed angle, keeping the origin fixed. If ‘p’ and ‘q’ are the intercepts of the line L on the new axes, then $\dfrac{1}{{{a}^{2}}}-\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{b}^{2}}}-\dfrac{1}{{{q}^{2}}}$ is equal to
(a) -1
(b) 0
(c) 1
(d) None of these
Answer
494.4k+ views
Hint: First take line as $\dfrac{x}{a}+\dfrac{y}{b}=1$, then if it is rotated by $\alpha $ angle in anticlockwise direction, then replace x by $\left( x\cos \alpha -y\sin \alpha \right)$ and y by $\left( x\sin \alpha +y\cos \alpha \right)$ then put the points (p,0) and (0,q) as they are intercepts to find relation of p and q. Then eliminate $\alpha $ by using identity ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$ to get the desired result.
Complete step by step answer:
Let $\alpha $ be the angle by which the line is rotated in anticlockwise direction.
Let the original line be L having the equation,
$\dfrac{x}{a}+\dfrac{y}{b}=1$
So, now rotating by angle $\alpha $ in anticlockwise direction, we will replace x by $\left( x\cos \alpha -y\sin \alpha \right)$ and y by $\left( x\sin \alpha +y\cos \alpha \right)$.
So, the new line L will be,
$\dfrac{\left( x\cos \alpha -y\sin \alpha \right)}{a}+\dfrac{\left( x\sin \alpha +y\cos \alpha \right)}{b}=1$
We are given that p, q are x intercept and y intercepts of new line so it should satisfy this equation, i.e., (p,0) and (0,q) respectively, we get
$\begin{align}
& \dfrac{\left( p\cos \alpha -0\sin \alpha \right)}{a}+\dfrac{\left( p\sin \alpha +0\cos \alpha \right)}{b}=1 \\
& \Rightarrow p\left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]=1 \\
& \Rightarrow \left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]=\dfrac{1}{p}.......(i) \\
\end{align}$
Similarly,
$\begin{align}
& \dfrac{\left( 0\cos \alpha -q\sin \alpha \right)}{a}+\dfrac{\left( 0\sin \alpha +q\cos \alpha \right)}{b}=1 \\
& \Rightarrow q\left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]=1 \\
& \Rightarrow \left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]=\dfrac{1}{q}.......(ii) \\
\end{align}$
Now we have to eliminate the terms $\alpha $ . So, we will square the equation (i) and (ii) separately and add them together.
Squaring equation (i), we get
$\Rightarrow {{\left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]}^{2}}=\dfrac{1}{{{p}^{2}}}$
Using the formula, ${{\left( c+d \right)}^{2}}={{c}^{2}}+2cd+d$, we get
$\dfrac{1}{{{p}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{2\sin \alpha \cos \alpha }{ab}..........(iii)$
Now squaring equation (ii), we get
$\Rightarrow {{\left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]}^{2}}=\dfrac{1}{{{q}^{2}}}$
Using the formula, ${{\left( c+d \right)}^{2}}={{c}^{2}}+2cd+d$, we get
$\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha -\dfrac{2\sin \alpha \cos \alpha }{ab}.........(iv)$
Now adding equation (iii) and (iv), we get
$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{2\sin \alpha \cos \alpha }{ab}+\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha -\dfrac{2\sin \alpha \cos \alpha }{ab}$
Cancelling the like terms, we get
$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha $
Now grouping and converting we get,
$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}\left( {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \right)+\dfrac{1}{{{b}^{2}}}\left( {{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \right)$
Now using identify ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$ we get,
$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}+\dfrac{1}{{{b}^{2}}}$
Bringing all the terms on the right hand side, we get
$\dfrac{1}{{{a}^{2}}}-\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{b}^{2}}}-\dfrac{1}{{{q}^{2}}}=0$
So, the value of the given expression $\dfrac{1}{{{a}^{2}}}-\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{b}^{2}}}-\dfrac{1}{{{q}^{2}}}$ is 0.
Hence the correct answer is option (b).
Note:
Students must be careful while dealing and forming an equation of lines when rotated by any fixed angle. While eliminating also they should be careful about calculation to avoid mistakes.
General mistake that student makes is, after rotating the line they forget to substitute then replace x by $\left( x\cos \alpha -y\sin \alpha \right)$ and y by $\left( x\sin \alpha +y\cos \alpha \right)$
So they won’t obtain the correct answer.
Complete step by step answer:
Let $\alpha $ be the angle by which the line is rotated in anticlockwise direction.
Let the original line be L having the equation,
$\dfrac{x}{a}+\dfrac{y}{b}=1$
So, now rotating by angle $\alpha $ in anticlockwise direction, we will replace x by $\left( x\cos \alpha -y\sin \alpha \right)$ and y by $\left( x\sin \alpha +y\cos \alpha \right)$.
So, the new line L will be,
$\dfrac{\left( x\cos \alpha -y\sin \alpha \right)}{a}+\dfrac{\left( x\sin \alpha +y\cos \alpha \right)}{b}=1$
We are given that p, q are x intercept and y intercepts of new line so it should satisfy this equation, i.e., (p,0) and (0,q) respectively, we get
$\begin{align}
& \dfrac{\left( p\cos \alpha -0\sin \alpha \right)}{a}+\dfrac{\left( p\sin \alpha +0\cos \alpha \right)}{b}=1 \\
& \Rightarrow p\left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]=1 \\
& \Rightarrow \left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]=\dfrac{1}{p}.......(i) \\
\end{align}$
Similarly,
$\begin{align}
& \dfrac{\left( 0\cos \alpha -q\sin \alpha \right)}{a}+\dfrac{\left( 0\sin \alpha +q\cos \alpha \right)}{b}=1 \\
& \Rightarrow q\left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]=1 \\
& \Rightarrow \left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]=\dfrac{1}{q}.......(ii) \\
\end{align}$
Now we have to eliminate the terms $\alpha $ . So, we will square the equation (i) and (ii) separately and add them together.
Squaring equation (i), we get
$\Rightarrow {{\left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]}^{2}}=\dfrac{1}{{{p}^{2}}}$
Using the formula, ${{\left( c+d \right)}^{2}}={{c}^{2}}+2cd+d$, we get
$\dfrac{1}{{{p}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{2\sin \alpha \cos \alpha }{ab}..........(iii)$
Now squaring equation (ii), we get
$\Rightarrow {{\left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]}^{2}}=\dfrac{1}{{{q}^{2}}}$
Using the formula, ${{\left( c+d \right)}^{2}}={{c}^{2}}+2cd+d$, we get
$\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha -\dfrac{2\sin \alpha \cos \alpha }{ab}.........(iv)$
Now adding equation (iii) and (iv), we get
$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{2\sin \alpha \cos \alpha }{ab}+\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha -\dfrac{2\sin \alpha \cos \alpha }{ab}$
Cancelling the like terms, we get
$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha $
Now grouping and converting we get,
$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}\left( {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \right)+\dfrac{1}{{{b}^{2}}}\left( {{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \right)$
Now using identify ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$ we get,
$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}+\dfrac{1}{{{b}^{2}}}$
Bringing all the terms on the right hand side, we get
$\dfrac{1}{{{a}^{2}}}-\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{b}^{2}}}-\dfrac{1}{{{q}^{2}}}=0$
So, the value of the given expression $\dfrac{1}{{{a}^{2}}}-\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{b}^{2}}}-\dfrac{1}{{{q}^{2}}}$ is 0.
Hence the correct answer is option (b).
Note:
Students must be careful while dealing and forming an equation of lines when rotated by any fixed angle. While eliminating also they should be careful about calculation to avoid mistakes.
General mistake that student makes is, after rotating the line they forget to substitute then replace x by $\left( x\cos \alpha -y\sin \alpha \right)$ and y by $\left( x\sin \alpha +y\cos \alpha \right)$
So they won’t obtain the correct answer.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
