Answer

Verified

446.7k+ views

**Hint:**First take line as $\dfrac{x}{a}+\dfrac{y}{b}=1$, then if it is rotated by $\alpha $ angle in anticlockwise direction, then replace x by $\left( x\cos \alpha -y\sin \alpha \right)$ and y by $\left( x\sin \alpha +y\cos \alpha \right)$ then put the points (p,0) and (0,q) as they are intercepts to find relation of p and q. Then eliminate $\alpha $ by using identity ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$ to get the desired result.

**Complete step by step answer:**

Let $\alpha $ be the angle by which the line is rotated in anticlockwise direction.

Let the original line be L having the equation,

$\dfrac{x}{a}+\dfrac{y}{b}=1$

So, now rotating by angle $\alpha $ in anticlockwise direction, we will replace x by $\left( x\cos \alpha -y\sin \alpha \right)$ and y by $\left( x\sin \alpha +y\cos \alpha \right)$.

So, the new line L will be,

$\dfrac{\left( x\cos \alpha -y\sin \alpha \right)}{a}+\dfrac{\left( x\sin \alpha +y\cos \alpha \right)}{b}=1$

We are given that p, q are x intercept and y intercepts of new line so it should satisfy this equation, i.e., (p,0) and (0,q) respectively, we get

$\begin{align}

& \dfrac{\left( p\cos \alpha -0\sin \alpha \right)}{a}+\dfrac{\left( p\sin \alpha +0\cos \alpha \right)}{b}=1 \\

& \Rightarrow p\left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]=1 \\

& \Rightarrow \left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]=\dfrac{1}{p}.......(i) \\

\end{align}$

Similarly,

$\begin{align}

& \dfrac{\left( 0\cos \alpha -q\sin \alpha \right)}{a}+\dfrac{\left( 0\sin \alpha +q\cos \alpha \right)}{b}=1 \\

& \Rightarrow q\left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]=1 \\

& \Rightarrow \left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]=\dfrac{1}{q}.......(ii) \\

\end{align}$

Now we have to eliminate the terms $\alpha $ . So, we will square the equation (i) and (ii) separately and add them together.

Squaring equation (i), we get

$\Rightarrow {{\left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]}^{2}}=\dfrac{1}{{{p}^{2}}}$

Using the formula, ${{\left( c+d \right)}^{2}}={{c}^{2}}+2cd+d$, we get

$\dfrac{1}{{{p}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{2\sin \alpha \cos \alpha }{ab}..........(iii)$

Now squaring equation (ii), we get

$\Rightarrow {{\left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]}^{2}}=\dfrac{1}{{{q}^{2}}}$

Using the formula, ${{\left( c+d \right)}^{2}}={{c}^{2}}+2cd+d$, we get

$\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha -\dfrac{2\sin \alpha \cos \alpha }{ab}.........(iv)$

Now adding equation (iii) and (iv), we get

$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{2\sin \alpha \cos \alpha }{ab}+\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha -\dfrac{2\sin \alpha \cos \alpha }{ab}$

Cancelling the like terms, we get

$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha $

Now grouping and converting we get,

$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}\left( {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \right)+\dfrac{1}{{{b}^{2}}}\left( {{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \right)$

Now using identify ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$ we get,

$\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}+\dfrac{1}{{{b}^{2}}}$

Bringing all the terms on the right hand side, we get

$\dfrac{1}{{{a}^{2}}}-\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{b}^{2}}}-\dfrac{1}{{{q}^{2}}}=0$

So, the value of the given expression $\dfrac{1}{{{a}^{2}}}-\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{b}^{2}}}-\dfrac{1}{{{q}^{2}}}$ is 0.

**Hence the correct answer is option (b).**

**Note:**

Students must be careful while dealing and forming an equation of lines when rotated by any fixed angle. While eliminating also they should be careful about calculation to avoid mistakes.

General mistake that student makes is, after rotating the line they forget to substitute then replace x by $\left( x\cos \alpha -y\sin \alpha \right)$ and y by $\left( x\sin \alpha +y\cos \alpha \right)$

So they won’t obtain the correct answer.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

A rainbow has circular shape because A The earth is class 11 physics CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell