
The inverse of matrix A= $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ is
A. A
B.${{A}^{T}} $
C. $\left [ \begin{matrix}
{1} & {0} & {0} \\
{0} & {1} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$
D. $\left [ \begin{matrix}
{1} & {0} & {0} \\
{1} & {0} &{0} \\
{0} & {1} & {0} \\
\end{matrix} \right]$
Answer
233.1k+ views
Hint:
We have to find ${{A}^{-1}}$ of this 3×3 matrix $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ , so for that we will solve for $adjA$ and $|A|$. And then dividing both of them will get our required solution. As for finding ${{A}^{-1}}$ the formula suggests ${{A}^{-1}}=\dfrac{adjA}{|A|}$.
Formula Used:
${{A}^{-1}}=\dfrac{adjA}{|A|}$
$|A|$ = $[{{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}})-{{a}_{12}}({{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}})+{{a}_{13}}({{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}})]$
Complete step-by-step Solution:
We are given matrix $A$ = $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ and we have to find ${{A}^ {-1}} $
So first of all as the formula suggests we have to find $adjA$,
$adjA=\left[ \begin{matrix}
{{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} & {{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}} & {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \\
{{a}_{12}}{{a}_{33}}-{{a}_{13}}{{a}_{32}} & {{a}_{11}}{{a}_{33}}-{{a}_{13}}{{a}_{31}} & {{a}_{11}}{{a}_{32}}-{{a}_{12}}{{a}_{31}} \\
{{a}_{12}}{{a}_{23}}-{{a}_{13}}{{a}_{22}} & {{a}_{11}}{{a}_{23}}-{{a}_{13}}{{a}_{21}} & {{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0(1)-0(0) \\
1(1)-0(0) \\
1(0)-0(0) \\
\end{matrix} & \begin{matrix}
1(1)-0(0) \\
0(1)-0(0) \\
0(0)-0(1) \\
\end{matrix} & \begin{matrix}
1(0)-0(0) \\
0(0)-1(0) \\
0(0)-1(1) \\
\end{matrix} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now as we have done above that the signs of the adj will change as per the formula
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now |A| of matrix$\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
1 \\
\end{matrix} \\
\end{matrix} \right]$ is
$|A|=0(0-0)-1(1-0) +0(0-0)$
$\Rightarrow 0(0)-1+0 $
$\Rightarrow |A|=-1 $
Now as ${{A}^ {-1}} =\dfrac{adjA}{|A|} $
$\Rightarrow {{A}^{-1}}=\dfrac{\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]}{-1}$=$\left[ \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$= A itself only .
Hence option A is correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving adjA and |A| for a 3×3 matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
We have to find ${{A}^{-1}}$ of this 3×3 matrix $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ , so for that we will solve for $adjA$ and $|A|$. And then dividing both of them will get our required solution. As for finding ${{A}^{-1}}$ the formula suggests ${{A}^{-1}}=\dfrac{adjA}{|A|}$.
Formula Used:
${{A}^{-1}}=\dfrac{adjA}{|A|}$
$|A|$ = $[{{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}})-{{a}_{12}}({{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}})+{{a}_{13}}({{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}})]$
Complete step-by-step Solution:
We are given matrix $A$ = $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ and we have to find ${{A}^ {-1}} $
So first of all as the formula suggests we have to find $adjA$,
$adjA=\left[ \begin{matrix}
{{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} & {{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}} & {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \\
{{a}_{12}}{{a}_{33}}-{{a}_{13}}{{a}_{32}} & {{a}_{11}}{{a}_{33}}-{{a}_{13}}{{a}_{31}} & {{a}_{11}}{{a}_{32}}-{{a}_{12}}{{a}_{31}} \\
{{a}_{12}}{{a}_{23}}-{{a}_{13}}{{a}_{22}} & {{a}_{11}}{{a}_{23}}-{{a}_{13}}{{a}_{21}} & {{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0(1)-0(0) \\
1(1)-0(0) \\
1(0)-0(0) \\
\end{matrix} & \begin{matrix}
1(1)-0(0) \\
0(1)-0(0) \\
0(0)-0(1) \\
\end{matrix} & \begin{matrix}
1(0)-0(0) \\
0(0)-1(0) \\
0(0)-1(1) \\
\end{matrix} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now as we have done above that the signs of the adj will change as per the formula
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now |A| of matrix$\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
1 \\
\end{matrix} \\
\end{matrix} \right]$ is
$|A|=0(0-0)-1(1-0) +0(0-0)$
$\Rightarrow 0(0)-1+0 $
$\Rightarrow |A|=-1 $
Now as ${{A}^ {-1}} =\dfrac{adjA}{|A|} $
$\Rightarrow {{A}^{-1}}=\dfrac{\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]}{-1}$=$\left[ \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$= A itself only .
Hence option A is correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving adjA and |A| for a 3×3 matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding How a Current Loop Acts as a Magnetic Dipole

