Answer
Verified
492.6k+ views
Hint: Integrating factor of a differential equation is a term with which we should multiply the differential equation so that it becomes exact. An exact differential equation is the differential equation $Mdx+Ndy=0$ which satisfies the Euler criterion for exactness, i.e. $\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}$. In a linear order differential equation, i.e. equation of the form $\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right)$ the integrating factor $IF={{e}^{\int{P\left( x \right)dx}}}$. Convert the above differential equation in the exact form by dividing on both sides by $1-{{y}^{2}}$ and find the integrating factor using the above formula for IF.
Complete step by step solution:
We have $\left( 1-{{y}^{2}} \right)\dfrac{dx}{dy}+yx=ay$
Dividing both sides by $1-{{y}^{2}}$, we get
$\dfrac{1-{{y}^{2}}}{1-{{y}^{2}}}\dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$
$\Rightarrow \dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$, which is of the form $\dfrac{dx}{dy}+P\left( y \right)x=Q\left( y \right)$, where $P\left( y \right)=\dfrac{y}{1-{{y}^{2}}}$ and $Q\left( y \right)=\dfrac{ay}{1-{{y}^{2}}}$
We have Integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}$.
Let $I=\int{P\left( y \right)dy}$
So, we have
$I=\int{\dfrac{y}{1-{{y}^{2}}}dy}$
Put $1-{{y}^{2}}=z$
Differentiating both sides, we get
\[\begin{align}
& -2ydy=dz \\
& \Rightarrow ydy=-\dfrac{dz}{2} \\
\end{align}\]
So, we have
\[\begin{align}
& I=\int{\dfrac{-dz}{2z}} \\
& =-\dfrac{1}{2}\int{\dfrac{dz}{z}} \\
\end{align}\]
We know that $\int{\dfrac{dx}{x}=\ln x+c}$
Using, we get
$I=-\dfrac{1}{2}\ln z$
Returning to the original variable, we get
$\begin{align}
& I=-\dfrac{1}{2}\ln \left( \left| 1-{{y}^{2}} \right| \right) \\
& \Rightarrow I=\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right) \\
\end{align}$
Hence the integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}={{e}^{I}}={{e}^{\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right)}}$
We know that ${{e}^{\ln x}}=x$
Using we get
$IF=\dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}}$.
Hence, options [b] and [d] are correct.
Note: [1]A differential equation when in exact form can be written in the form $du=dv$.
In a Linear differential equation when multiplied by Integrating factor we have $u=y\cdot IF$ and $v=\int{Q\left( x \right)\cdot IFdx}$.
[2] Euler’s criterion for exactness is a direct result of the fact $\dfrac{\partial f}{\partial x\partial y}=\dfrac{\partial f}{\partial y\partial x}$ .
[3] Sometimes, the following identities help in converting a differential equation in the exact form:
[a] $xdy+ydx=d(xy)$
[b] $dx+dy=d(x+y)$
[c] $\dfrac{xdy-ydx}{{{x}^{2}}}=d\left( \dfrac{y}{x} \right)$
[d] $\dfrac{dx}{x}=d\left( \ln x \right)$
[e] $m{{x}^{m-1}}{{y}^{n}}+n{{x}^{m}}{{y}^{n-1}}=d\left( {{x}^{m}}{{y}^{n}} \right)$
Complete step by step solution:
We have $\left( 1-{{y}^{2}} \right)\dfrac{dx}{dy}+yx=ay$
Dividing both sides by $1-{{y}^{2}}$, we get
$\dfrac{1-{{y}^{2}}}{1-{{y}^{2}}}\dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$
$\Rightarrow \dfrac{dx}{dy}+\dfrac{y}{1-{{y}^{2}}}x=\dfrac{ay}{1-{{y}^{2}}}$, which is of the form $\dfrac{dx}{dy}+P\left( y \right)x=Q\left( y \right)$, where $P\left( y \right)=\dfrac{y}{1-{{y}^{2}}}$ and $Q\left( y \right)=\dfrac{ay}{1-{{y}^{2}}}$
We have Integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}$.
Let $I=\int{P\left( y \right)dy}$
So, we have
$I=\int{\dfrac{y}{1-{{y}^{2}}}dy}$
Put $1-{{y}^{2}}=z$
Differentiating both sides, we get
\[\begin{align}
& -2ydy=dz \\
& \Rightarrow ydy=-\dfrac{dz}{2} \\
\end{align}\]
So, we have
\[\begin{align}
& I=\int{\dfrac{-dz}{2z}} \\
& =-\dfrac{1}{2}\int{\dfrac{dz}{z}} \\
\end{align}\]
We know that $\int{\dfrac{dx}{x}=\ln x+c}$
Using, we get
$I=-\dfrac{1}{2}\ln z$
Returning to the original variable, we get
$\begin{align}
& I=-\dfrac{1}{2}\ln \left( \left| 1-{{y}^{2}} \right| \right) \\
& \Rightarrow I=\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right) \\
\end{align}$
Hence the integrating factor $IF={{e}^{\int{P\left( y \right)dy}}}={{e}^{I}}={{e}^{\ln \left( \dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}} \right)}}$
We know that ${{e}^{\ln x}}=x$
Using we get
$IF=\dfrac{1}{\sqrt{\left| 1-{{y}^{2}} \right|}}$.
Hence, options [b] and [d] are correct.
Note: [1]A differential equation when in exact form can be written in the form $du=dv$.
In a Linear differential equation when multiplied by Integrating factor we have $u=y\cdot IF$ and $v=\int{Q\left( x \right)\cdot IFdx}$.
[2] Euler’s criterion for exactness is a direct result of the fact $\dfrac{\partial f}{\partial x\partial y}=\dfrac{\partial f}{\partial y\partial x}$ .
[3] Sometimes, the following identities help in converting a differential equation in the exact form:
[a] $xdy+ydx=d(xy)$
[b] $dx+dy=d(x+y)$
[c] $\dfrac{xdy-ydx}{{{x}^{2}}}=d\left( \dfrac{y}{x} \right)$
[d] $\dfrac{dx}{x}=d\left( \ln x \right)$
[e] $m{{x}^{m-1}}{{y}^{n}}+n{{x}^{m}}{{y}^{n-1}}=d\left( {{x}^{m}}{{y}^{n}} \right)$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it