
The integral $\int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} \right]dx} $ is equal to
\[
{\text{A}}{\text{. }}\dfrac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C \\
{\text{B}}{\text{. }}\dfrac{{{x^5}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C \\
{\text{C}}{\text{. }}\dfrac{{ - {x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C \\
{\text{D}}{\text{. }}\dfrac{{ - {x^5}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C \\
\]
Answer
605.1k+ views
Hint- Here, we will be using integration by substitution method.
Let the given integral be \[
{\text{I}} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} \right]dx} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left[ {{x^5}\left( {\dfrac{{{x^5} + {x^3} + 1}}{{{x^5}}}} \right)} \right]}^3}}}} \right]dx} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left[ {{x^5}\left( {\dfrac{{{x^5}}}{{{x^5}}} + \dfrac{{{x^3}}}{{{x^5}}} + \dfrac{1}{{{x^5}}}} \right)} \right]}^3}}}} \right]dx} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left[ {{x^5}\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)} \right]}^3}}}} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} \\
\]
In the above integral, let us take ${x^{15}}$ common from the numerator also.
\[ \Rightarrow {\text{I}} = \int {\left[ {\dfrac{{{x^{15}}\left( {\dfrac{{2{x^{12}} + 5{x^9}}}{{{x^{15}}}}} \right)}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} = \int {\left[ {\dfrac{{{x^{15}}\left( {\dfrac{{2{x^{12}}}}{{{x^{15}}}} + \dfrac{{5{x^9}}}{{{x^{15}}}}} \right)}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} = \int {\left[ {\dfrac{{{x^{15}}\left( {2{x^{ - 3}} + 5{x^{ - 6}}} \right)}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} \]
Now let us cancel out ${x^{15}}$ from the numerator with the ${x^{15}}$ in the denominator, we get
\[ \Rightarrow {\text{I}} = \int {\left[ {\dfrac{{2{x^{ - 3}} + 5{x^{ - 6}}}}{{{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} {\text{ }} \to {\text{(1)}}\]
In order to solve the above integral, we will use integration by substitution method.
Put \[t = \left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right){\text{ }} \to {\text{(2)}}\]
Let us differentiate equation (1) with respect to $x$ both sides, we get
\[
\dfrac{{dt}}{{dx}} = \dfrac{{d\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}}{{dx}} = 0 + \dfrac{{d\left( {{x^{ - 2}}} \right)}}{{dx}} + \dfrac{{d\left( {{x^{ - 5}}} \right)}}{{dx}} = - 2{x^{ - 3}} - 5{x^{ - 6}} = - \left( {2{x^{ - 3}} + 5{x^{ - 6}}} \right) \\
\Rightarrow - dt = \left( {2{x^{ - 3}} + 5{x^{ - 6}}} \right)dx{\text{ }} \to {\text{(3)}} \\
\]
Clearly, we can see that after differentiating the assumed function we are getting the numerator of the integral that we are supposed to find.
Using equation (2) and (3) in equation (1), the integral becomes
\[ \Rightarrow {\text{I}} = \int {\left[ {\dfrac{{ - 1}}{{{t^3}}}} \right]dt} = - \int {\left[ {{t^{ - 3}}} \right]dt} = - \left[ {\dfrac{{{t^{ - 2}}}}{{ - 2}}} \right] + C = \dfrac{1}{{2{t^2}}} + C\] where $C$ is a constant of integration.
Now substitute the value of $t$ back in terms of $x$ using equation (2), we get
\[ \Rightarrow {\text{I}} = \dfrac{1}{{2{t^2}}} + C = \dfrac{1}{{2{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^2}}} + C = \dfrac{1}{{2{{\left( {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^5}}}} \right)}^2}}} + C = \dfrac{1}{{2{{\left( {\dfrac{{{x^5} + {x^3} + 1}}{{{x^5}}}} \right)}^2}}} + C = \dfrac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C\]
Therefore, ${\text{I}} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} \right]dx} = \dfrac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$
Hence, option A is correct.
Note- In this problem, we have finally converted the integral in a form where the differentiation of the denominator function gives the numerator function and then by putting the denominator function as another variable, the given integral is solved.
Let the given integral be \[
{\text{I}} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} \right]dx} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left[ {{x^5}\left( {\dfrac{{{x^5} + {x^3} + 1}}{{{x^5}}}} \right)} \right]}^3}}}} \right]dx} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left[ {{x^5}\left( {\dfrac{{{x^5}}}{{{x^5}}} + \dfrac{{{x^3}}}{{{x^5}}} + \dfrac{1}{{{x^5}}}} \right)} \right]}^3}}}} \right]dx} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left[ {{x^5}\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)} \right]}^3}}}} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} \\
\]
In the above integral, let us take ${x^{15}}$ common from the numerator also.
\[ \Rightarrow {\text{I}} = \int {\left[ {\dfrac{{{x^{15}}\left( {\dfrac{{2{x^{12}} + 5{x^9}}}{{{x^{15}}}}} \right)}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} = \int {\left[ {\dfrac{{{x^{15}}\left( {\dfrac{{2{x^{12}}}}{{{x^{15}}}} + \dfrac{{5{x^9}}}{{{x^{15}}}}} \right)}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} = \int {\left[ {\dfrac{{{x^{15}}\left( {2{x^{ - 3}} + 5{x^{ - 6}}} \right)}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} \]
Now let us cancel out ${x^{15}}$ from the numerator with the ${x^{15}}$ in the denominator, we get
\[ \Rightarrow {\text{I}} = \int {\left[ {\dfrac{{2{x^{ - 3}} + 5{x^{ - 6}}}}{{{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} \right]dx} {\text{ }} \to {\text{(1)}}\]
In order to solve the above integral, we will use integration by substitution method.
Put \[t = \left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right){\text{ }} \to {\text{(2)}}\]
Let us differentiate equation (1) with respect to $x$ both sides, we get
\[
\dfrac{{dt}}{{dx}} = \dfrac{{d\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}}{{dx}} = 0 + \dfrac{{d\left( {{x^{ - 2}}} \right)}}{{dx}} + \dfrac{{d\left( {{x^{ - 5}}} \right)}}{{dx}} = - 2{x^{ - 3}} - 5{x^{ - 6}} = - \left( {2{x^{ - 3}} + 5{x^{ - 6}}} \right) \\
\Rightarrow - dt = \left( {2{x^{ - 3}} + 5{x^{ - 6}}} \right)dx{\text{ }} \to {\text{(3)}} \\
\]
Clearly, we can see that after differentiating the assumed function we are getting the numerator of the integral that we are supposed to find.
Using equation (2) and (3) in equation (1), the integral becomes
\[ \Rightarrow {\text{I}} = \int {\left[ {\dfrac{{ - 1}}{{{t^3}}}} \right]dt} = - \int {\left[ {{t^{ - 3}}} \right]dt} = - \left[ {\dfrac{{{t^{ - 2}}}}{{ - 2}}} \right] + C = \dfrac{1}{{2{t^2}}} + C\] where $C$ is a constant of integration.
Now substitute the value of $t$ back in terms of $x$ using equation (2), we get
\[ \Rightarrow {\text{I}} = \dfrac{1}{{2{t^2}}} + C = \dfrac{1}{{2{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^2}}} + C = \dfrac{1}{{2{{\left( {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^5}}}} \right)}^2}}} + C = \dfrac{1}{{2{{\left( {\dfrac{{{x^5} + {x^3} + 1}}{{{x^5}}}} \right)}^2}}} + C = \dfrac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C\]
Therefore, ${\text{I}} = \int {\left[ {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} \right]dx} = \dfrac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$
Hence, option A is correct.
Note- In this problem, we have finally converted the integral in a form where the differentiation of the denominator function gives the numerator function and then by putting the denominator function as another variable, the given integral is solved.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

