Answer
Verified
424.2k+ views
Hint: The radioactivity formula is given by:
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
Where $ {{\text{N}}_{0}} $ = initial substance at t = 0
N = substance left at time t
By substituting the given conditions in this equation, the answer can be calculated.
Complete step by step solution:
We know that the formula for radioactive decay is given by:
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $ …… (1)
Now, in time $ {{\text{t}}_{1,}}\dfrac{1}{3} $ rd of the radioactive substance has been designed. So substance left is $ 1-\dfrac{1}{3}=\dfrac{2}{3}\text{rd} $ .
So, $ \text{N}=\dfrac{2}{3}{{\text{N}}_{0}} $
Therefore, putting this value in equation (1), we get,
$ \begin{align}
& =\dfrac{2}{3}{{\text{N}}_{0}}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} \\
& \dfrac{2}{3}\text{= }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} \\
& \text{ln}\dfrac{2}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{1}} \\
& 2\cdot 303\text{ log}\dfrac{2}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{1}} \\
\end{align} $
$ \begin{align}
& {{\text{t}}_{1}}=\dfrac{-2\cdot 303\text{ log}\left( \dfrac{2}{3} \right)}{\text{ }\!\!\lambda\!\!\text{ }} \\
& {{\text{t}}_{1}}=\dfrac{0\cdot 40553817}{\text{ }\!\!\lambda\!\!\text{ }} \\
\end{align} $
In time $ {{\text{t}}_{2,}}\dfrac{2}{3}\text{rd} $ of the radioactive substance has decayed. So, substance left is $ 1-\dfrac{2}{3}=\dfrac{1}{3}\text{rd} $
So, $ \text{N}=\dfrac{1}{3}{{\text{N}}_{0}} $
Therefore, putting this value in equation (1), we get
$ \dfrac{1}{3}{{\text{N}}_{0}}={{\text{N}}_{0}}{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}}}} $
$ \dfrac{1}{3}={{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}}}} $
$ \text{ln}\dfrac{1}{3}-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{\text{2}}} $
$ 2\cdot 303\text{ log}\dfrac{1}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}} $
$ \begin{align}
& {{\text{t}}_{2}}=\dfrac{-2\cdot 303\text{ log}\left( \dfrac{1}{3} \right)}{\text{ }\!\!\lambda\!\!\text{ }} \\
& {{\text{t}}_{2}}=\dfrac{1\cdot 09881025}{\text{ }\!\!\lambda\!\!\text{ }} \\
\end{align} $
Now, $ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{\left( 1\cdot 09881025-0\cdot 40553817 \right)}{\text{ }\!\!\lambda\!\!\text{ }} $
$ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 69327208}{\text{ }\!\!\lambda\!\!\text{ }} $ …. (2)
Now we know that half-life is given by
$ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 693}{\text{ }\!\!\lambda\!\!\text{ }} $
Or $ \text{ }\!\!\lambda\!\!\text{ }=\dfrac{0\cdot 693}{\text{t1/2}} $
as $ \text{t1/2} $ =20 minutes
So $ \text{ }\!\!\lambda\!\!\text{ }=\dfrac{0\cdot 693}{20} $ ….. (3)
Putting value of (3) in (2), we get
$ \begin{align}
& {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 69327208}{0\cdot 693}\times 20 \\
& \text{ }=20\cdot 0078522 \\
& {{\text{t}}_{2}}-{{\text{t}}_{1}}=20\text{ minutes} \\
\end{align} $
So , the correct option is (C) .
Note:
Radioactive decay is the breakdown of atomic nucleus which results in release of energy and matter from the nucleus.
The law of radioactive decay describes the statistical behaviour of a large number of nuclides, rather than individual ones.
Given a sample, the number of decay events $ -\text{dN} $ in small interval dt is proportional to number of atoms N present, that is:
$ \dfrac{-\text{dN}}{\text{dt}}\alpha \text{ N} $
Or $ \dfrac{-\text{dN}}{\text{N}}=\text{ }\!\!\lambda\!\!\text{ dt} $
Where $ \text{ }\!\!\lambda\!\!\text{ } $ =decay constant. On integrating, we get
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
This equation is called the decay rate equation. The half-life is related to decay constant by the formula
$ \text{t1/2}=\dfrac{\text{ln 2}}{\text{ }\!\!\lambda\!\!\text{ }} $
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
Where $ {{\text{N}}_{0}} $ = initial substance at t = 0
N = substance left at time t
By substituting the given conditions in this equation, the answer can be calculated.
Complete step by step solution:
We know that the formula for radioactive decay is given by:
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $ …… (1)
Now, in time $ {{\text{t}}_{1,}}\dfrac{1}{3} $ rd of the radioactive substance has been designed. So substance left is $ 1-\dfrac{1}{3}=\dfrac{2}{3}\text{rd} $ .
So, $ \text{N}=\dfrac{2}{3}{{\text{N}}_{0}} $
Therefore, putting this value in equation (1), we get,
$ \begin{align}
& =\dfrac{2}{3}{{\text{N}}_{0}}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} \\
& \dfrac{2}{3}\text{= }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} \\
& \text{ln}\dfrac{2}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{1}} \\
& 2\cdot 303\text{ log}\dfrac{2}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{1}} \\
\end{align} $
$ \begin{align}
& {{\text{t}}_{1}}=\dfrac{-2\cdot 303\text{ log}\left( \dfrac{2}{3} \right)}{\text{ }\!\!\lambda\!\!\text{ }} \\
& {{\text{t}}_{1}}=\dfrac{0\cdot 40553817}{\text{ }\!\!\lambda\!\!\text{ }} \\
\end{align} $
In time $ {{\text{t}}_{2,}}\dfrac{2}{3}\text{rd} $ of the radioactive substance has decayed. So, substance left is $ 1-\dfrac{2}{3}=\dfrac{1}{3}\text{rd} $
So, $ \text{N}=\dfrac{1}{3}{{\text{N}}_{0}} $
Therefore, putting this value in equation (1), we get
$ \dfrac{1}{3}{{\text{N}}_{0}}={{\text{N}}_{0}}{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}}}} $
$ \dfrac{1}{3}={{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}}}} $
$ \text{ln}\dfrac{1}{3}-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{\text{2}}} $
$ 2\cdot 303\text{ log}\dfrac{1}{3}=-\text{ }\!\!\lambda\!\!\text{ }{{\text{t}}_{2}} $
$ \begin{align}
& {{\text{t}}_{2}}=\dfrac{-2\cdot 303\text{ log}\left( \dfrac{1}{3} \right)}{\text{ }\!\!\lambda\!\!\text{ }} \\
& {{\text{t}}_{2}}=\dfrac{1\cdot 09881025}{\text{ }\!\!\lambda\!\!\text{ }} \\
\end{align} $
Now, $ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{\left( 1\cdot 09881025-0\cdot 40553817 \right)}{\text{ }\!\!\lambda\!\!\text{ }} $
$ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 69327208}{\text{ }\!\!\lambda\!\!\text{ }} $ …. (2)
Now we know that half-life is given by
$ {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 693}{\text{ }\!\!\lambda\!\!\text{ }} $
Or $ \text{ }\!\!\lambda\!\!\text{ }=\dfrac{0\cdot 693}{\text{t1/2}} $
as $ \text{t1/2} $ =20 minutes
So $ \text{ }\!\!\lambda\!\!\text{ }=\dfrac{0\cdot 693}{20} $ ….. (3)
Putting value of (3) in (2), we get
$ \begin{align}
& {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 69327208}{0\cdot 693}\times 20 \\
& \text{ }=20\cdot 0078522 \\
& {{\text{t}}_{2}}-{{\text{t}}_{1}}=20\text{ minutes} \\
\end{align} $
So , the correct option is (C) .
Note:
Radioactive decay is the breakdown of atomic nucleus which results in release of energy and matter from the nucleus.
The law of radioactive decay describes the statistical behaviour of a large number of nuclides, rather than individual ones.
Given a sample, the number of decay events $ -\text{dN} $ in small interval dt is proportional to number of atoms N present, that is:
$ \dfrac{-\text{dN}}{\text{dt}}\alpha \text{ N} $
Or $ \dfrac{-\text{dN}}{\text{N}}=\text{ }\!\!\lambda\!\!\text{ dt} $
Where $ \text{ }\!\!\lambda\!\!\text{ } $ =decay constant. On integrating, we get
$ \text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
This equation is called the decay rate equation. The half-life is related to decay constant by the formula
$ \text{t1/2}=\dfrac{\text{ln 2}}{\text{ }\!\!\lambda\!\!\text{ }} $
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE