Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# The general solution $\cos \theta = \cos x\;\;{\text{is}}\;\;\theta = 2n\pi \pm x,n \in I$? A.TrueB.False

Last updated date: 20th Sep 2024
Total views: 431.4k
Views today: 11.31k
Verified
431.4k+ views
Hint: We should know about trigonometry properties to solve such type of problems. Some formulas of trigonometry are needed which are given as-
$\cos \left( A \right) - \cos \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) \\ \sin \theta = 0 \Rightarrow \theta = n\pi \\$

The given function is$\cos \theta = \cos x$.
The general solution for $\cos \theta = \cos x$is
$\cos \theta - \cos x = 0$
Applying formula$\cos \left( A \right) - \cos \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$ then we get
$2\sin \left( {\dfrac{{\theta + x}}{2}} \right)\sin \left( {\dfrac{{\theta - x}}{2}} \right) = 0 \\ \sin \left( {\dfrac{{\theta + x}}{2}} \right) = 0\;{\text{or}}\;\sin \left( {\dfrac{{\theta - x}}{2}} \right) = 0 \\$
$\left( {\dfrac{{\theta + x}}{2}} \right) = n\pi \;{\text{or}}\;\left( {\dfrac{{\theta - x}}{2}} \right) = n\pi$
$\theta = 2n\pi \pm x,\;{\text{where}}\;n \in I$
Note: We should be aware of trigonometry formulas. The trigonometric functions are also called circular functions or angle functions. These are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. These functions are used in geometry, navigation, celestial mechanics, solid mechanics and many more. The most widely used trigonometric functions are the ${\text{sine}}$, the ${\text{cosine}}$and the ${\text{tangent}}{\text{.}}$