Answer
Verified
431.7k+ views
Hint: To solve this question, we will use the concept of linear differential equation. We have to follow the following steps to solve a linear differential equation.
Step 1: write the differential equation in the form $\dfrac{{dy}}{{dx}} + Py = Q$ and obtain P and Q.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Pdx} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to x to obtain $y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $, which gives the required solution.
Complete step-by-step answer:
Given that,
Differential equation is:
$\dfrac{{dy}}{{dx}} + \dfrac{{xy}}{{{x^2} - 1}} = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$ …….. (i)
Comparing this with the general form of differential equation, i.e. $\dfrac{{dy}}{{dx}} + Py = Q$
We get,
$ \Rightarrow P = \dfrac{x}{{{x^2} - 1}}$ and $Q = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$
We know that,
Integration factor (I.F.) is given by,
$I.F. = {e^{\int {Pdx} }}$
Putting the value of P, we will get
$ \Rightarrow I.F. = {e^{\int {\dfrac{x}{{{x^2} - 1}}dx} }}$ ……… (ii)
First, we will find $\int {\dfrac{x}{{{x^2} - 1}}} dx$
So, let $t = {x^2} - 1$
Differentiate both sides,
$dt = 2xdx$
$\dfrac{{dt}}{2} = xdx$
Using this, we can write the above integration as:
$ \Rightarrow \int {\dfrac{1}{t}} \dfrac{{dt}}{2}$
Integrating this, we will get
$ \Rightarrow \dfrac{1}{2}\ln \left| t \right| + C$
Replace $t = {x^2} - 1$,
$ \Rightarrow \dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C$
Putting this value in equation (ii), we will get
$ \Rightarrow I.F. = {e^{\dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C}}$
According to the question,
The differential equation satisfies (-1, 1)
So, we can say that,
$\left| {{x^2} - 1} \right| = 1 - {x^2}$
Hence,
$ \Rightarrow I.F. = {e^{\ln \left( {\sqrt {1 - {x^2}} } \right) + C}}$
Solving this, we will get
$ \Rightarrow I.F. = \sqrt {1 - {x^2}} $ [$\therefore {e^{\ln x}} = x$]
Now,
The required solution will be,
$y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $
Putting the required values, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}\sqrt {1 - {x^2}} dx + C} \]
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\left( {{x^4} + 2x} \right)dx + C} \]
Solving this, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\]
we know that,
$y = f\left( x \right)$
So,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\] ……. (iii)
Putting x = 0, we will get
\[ \Rightarrow f\left( 0 \right)\sqrt {1 - {0^2}} = \dfrac{{{0^5}}}{5} + {0^2} + C\]
We have given $f\left( 0 \right) = 0$
Hence, we get
$ \Rightarrow C = 0$
Therefore, equation (iii) will become,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2}\]
\[ \Rightarrow f\left( x \right) = \dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}\]
According to the question, we have to find $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $
Putting the value of f(x),
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} = \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}dx} \]
We can write this as,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} + \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \] ………. (iv)
Using the identity, we know that
$\int\limits_{ - a}^a {f\left( x \right)dx} = 0$, if f is an odd function and,
$\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} $, if f is an even function.
Here we can see that,
\[\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}\] is an odd function.
So,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} = 0\]
Then, equation (iv) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \]
Put $x = \sin \theta $
Differentiate both sides,
$dx = \cos \theta d\theta $
When $x = 0$, $\theta = {\sin ^{ - 1}}0 = 0$
And when $x = \dfrac{{\sqrt 3 }}{2}$, $\theta = {\sin ^{ - 1}}\dfrac{{\sqrt 3 }}{2} = \dfrac{\pi }{3}$
Using this, we will get
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \right)\cos \theta d\theta } \]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}} \right)\cos \theta d\theta } \] [$\therefore \sqrt {1 - {{\sin }^2}\theta } = \cos \theta $]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {{{\sin }^2}\theta d\theta } \] ….. (v)
We know that,
$ \Rightarrow \cos 2x = 1 - 2{\sin ^2}x$
So,
$ \Rightarrow {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$
Hence equation (v) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{1 - \cos 2x}}{2}d\theta } \]
Integrating this, we will get
\[ \Rightarrow 2\left[ {\dfrac{\theta }{2} - \dfrac{{\sin 2\theta }}{4}} \right]_0^{\dfrac{\pi }{3}}\]
\[ \Rightarrow 2\left[ {\left( {\dfrac{\pi }{6} - \dfrac{{\sin \dfrac{{2\pi }}{3}}}{4}} \right) - \left( {\dfrac{0}{2} - \dfrac{{\sin 20}}{4}} \right)} \right]\]
\[ \Rightarrow 2\left[ {\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{8} - 0} \right]\]
\[ \Rightarrow \dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
Hence, we can say that the value of $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $ is \[\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
So, the correct answer is “Option B”.
Note: when the differential equation is in the form $\dfrac{{dx}}{{dy}} + Rx = S$, then
Step 1: write the differential equation in the form $\dfrac{{dx}}{{dy}} + Rx = S$ and obtain R and S.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Rdy} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to y to obtain $x\left( {I.F.} \right) = \int {S\left( {I.F.} \right)dy + C} $, which gives the required solution.
Step 1: write the differential equation in the form $\dfrac{{dy}}{{dx}} + Py = Q$ and obtain P and Q.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Pdx} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to x to obtain $y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $, which gives the required solution.
Complete step-by-step answer:
Given that,
Differential equation is:
$\dfrac{{dy}}{{dx}} + \dfrac{{xy}}{{{x^2} - 1}} = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$ …….. (i)
Comparing this with the general form of differential equation, i.e. $\dfrac{{dy}}{{dx}} + Py = Q$
We get,
$ \Rightarrow P = \dfrac{x}{{{x^2} - 1}}$ and $Q = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$
We know that,
Integration factor (I.F.) is given by,
$I.F. = {e^{\int {Pdx} }}$
Putting the value of P, we will get
$ \Rightarrow I.F. = {e^{\int {\dfrac{x}{{{x^2} - 1}}dx} }}$ ……… (ii)
First, we will find $\int {\dfrac{x}{{{x^2} - 1}}} dx$
So, let $t = {x^2} - 1$
Differentiate both sides,
$dt = 2xdx$
$\dfrac{{dt}}{2} = xdx$
Using this, we can write the above integration as:
$ \Rightarrow \int {\dfrac{1}{t}} \dfrac{{dt}}{2}$
Integrating this, we will get
$ \Rightarrow \dfrac{1}{2}\ln \left| t \right| + C$
Replace $t = {x^2} - 1$,
$ \Rightarrow \dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C$
Putting this value in equation (ii), we will get
$ \Rightarrow I.F. = {e^{\dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C}}$
According to the question,
The differential equation satisfies (-1, 1)
So, we can say that,
$\left| {{x^2} - 1} \right| = 1 - {x^2}$
Hence,
$ \Rightarrow I.F. = {e^{\ln \left( {\sqrt {1 - {x^2}} } \right) + C}}$
Solving this, we will get
$ \Rightarrow I.F. = \sqrt {1 - {x^2}} $ [$\therefore {e^{\ln x}} = x$]
Now,
The required solution will be,
$y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $
Putting the required values, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}\sqrt {1 - {x^2}} dx + C} \]
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\left( {{x^4} + 2x} \right)dx + C} \]
Solving this, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\]
we know that,
$y = f\left( x \right)$
So,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\] ……. (iii)
Putting x = 0, we will get
\[ \Rightarrow f\left( 0 \right)\sqrt {1 - {0^2}} = \dfrac{{{0^5}}}{5} + {0^2} + C\]
We have given $f\left( 0 \right) = 0$
Hence, we get
$ \Rightarrow C = 0$
Therefore, equation (iii) will become,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2}\]
\[ \Rightarrow f\left( x \right) = \dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}\]
According to the question, we have to find $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $
Putting the value of f(x),
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} = \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}dx} \]
We can write this as,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} + \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \] ………. (iv)
Using the identity, we know that
$\int\limits_{ - a}^a {f\left( x \right)dx} = 0$, if f is an odd function and,
$\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} $, if f is an even function.
Here we can see that,
\[\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}\] is an odd function.
So,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} = 0\]
Then, equation (iv) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \]
Put $x = \sin \theta $
Differentiate both sides,
$dx = \cos \theta d\theta $
When $x = 0$, $\theta = {\sin ^{ - 1}}0 = 0$
And when $x = \dfrac{{\sqrt 3 }}{2}$, $\theta = {\sin ^{ - 1}}\dfrac{{\sqrt 3 }}{2} = \dfrac{\pi }{3}$
Using this, we will get
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \right)\cos \theta d\theta } \]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}} \right)\cos \theta d\theta } \] [$\therefore \sqrt {1 - {{\sin }^2}\theta } = \cos \theta $]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {{{\sin }^2}\theta d\theta } \] ….. (v)
We know that,
$ \Rightarrow \cos 2x = 1 - 2{\sin ^2}x$
So,
$ \Rightarrow {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$
Hence equation (v) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{1 - \cos 2x}}{2}d\theta } \]
Integrating this, we will get
\[ \Rightarrow 2\left[ {\dfrac{\theta }{2} - \dfrac{{\sin 2\theta }}{4}} \right]_0^{\dfrac{\pi }{3}}\]
\[ \Rightarrow 2\left[ {\left( {\dfrac{\pi }{6} - \dfrac{{\sin \dfrac{{2\pi }}{3}}}{4}} \right) - \left( {\dfrac{0}{2} - \dfrac{{\sin 20}}{4}} \right)} \right]\]
\[ \Rightarrow 2\left[ {\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{8} - 0} \right]\]
\[ \Rightarrow \dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
Hence, we can say that the value of $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $ is \[\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
So, the correct answer is “Option B”.
Note: when the differential equation is in the form $\dfrac{{dx}}{{dy}} + Rx = S$, then
Step 1: write the differential equation in the form $\dfrac{{dx}}{{dy}} + Rx = S$ and obtain R and S.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Rdy} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to y to obtain $x\left( {I.F.} \right) = \int {S\left( {I.F.} \right)dy + C} $, which gives the required solution.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Name 10 Living and Non living things class 9 biology CBSE