The function $y = f\left( x \right)$ is the solution of the differential equation $\dfrac{{dy}}{{dx}} + \dfrac{{xy}}{{{x^2} - 1}} = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$ in (-1, 1) satisfying $f\left( 0 \right) = 0$ then $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $ is
A. $\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{2}$
B. $\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}$
C. $\dfrac{\pi }{6} + \dfrac{{\sqrt 3 }}{4}$
D. $\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{4}$
Answer
Verified
469.2k+ views
Hint: To solve this question, we will use the concept of linear differential equation. We have to follow the following steps to solve a linear differential equation.
Step 1: write the differential equation in the form $\dfrac{{dy}}{{dx}} + Py = Q$ and obtain P and Q.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Pdx} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to x to obtain $y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $, which gives the required solution.
Complete step-by-step answer:
Given that,
Differential equation is:
$\dfrac{{dy}}{{dx}} + \dfrac{{xy}}{{{x^2} - 1}} = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$ …….. (i)
Comparing this with the general form of differential equation, i.e. $\dfrac{{dy}}{{dx}} + Py = Q$
We get,
$ \Rightarrow P = \dfrac{x}{{{x^2} - 1}}$ and $Q = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$
We know that,
Integration factor (I.F.) is given by,
$I.F. = {e^{\int {Pdx} }}$
Putting the value of P, we will get
$ \Rightarrow I.F. = {e^{\int {\dfrac{x}{{{x^2} - 1}}dx} }}$ ……… (ii)
First, we will find $\int {\dfrac{x}{{{x^2} - 1}}} dx$
So, let $t = {x^2} - 1$
Differentiate both sides,
$dt = 2xdx$
$\dfrac{{dt}}{2} = xdx$
Using this, we can write the above integration as:
$ \Rightarrow \int {\dfrac{1}{t}} \dfrac{{dt}}{2}$
Integrating this, we will get
$ \Rightarrow \dfrac{1}{2}\ln \left| t \right| + C$
Replace $t = {x^2} - 1$,
$ \Rightarrow \dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C$
Putting this value in equation (ii), we will get
$ \Rightarrow I.F. = {e^{\dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C}}$
According to the question,
The differential equation satisfies (-1, 1)
So, we can say that,
$\left| {{x^2} - 1} \right| = 1 - {x^2}$
Hence,
$ \Rightarrow I.F. = {e^{\ln \left( {\sqrt {1 - {x^2}} } \right) + C}}$
Solving this, we will get
$ \Rightarrow I.F. = \sqrt {1 - {x^2}} $ [$\therefore {e^{\ln x}} = x$]
Now,
The required solution will be,
$y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $
Putting the required values, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}\sqrt {1 - {x^2}} dx + C} \]
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\left( {{x^4} + 2x} \right)dx + C} \]
Solving this, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\]
we know that,
$y = f\left( x \right)$
So,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\] ……. (iii)
Putting x = 0, we will get
\[ \Rightarrow f\left( 0 \right)\sqrt {1 - {0^2}} = \dfrac{{{0^5}}}{5} + {0^2} + C\]
We have given $f\left( 0 \right) = 0$
Hence, we get
$ \Rightarrow C = 0$
Therefore, equation (iii) will become,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2}\]
\[ \Rightarrow f\left( x \right) = \dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}\]
According to the question, we have to find $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $
Putting the value of f(x),
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} = \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}dx} \]
We can write this as,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} + \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \] ………. (iv)
Using the identity, we know that
$\int\limits_{ - a}^a {f\left( x \right)dx} = 0$, if f is an odd function and,
$\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} $, if f is an even function.
Here we can see that,
\[\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}\] is an odd function.
So,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} = 0\]
Then, equation (iv) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \]
Put $x = \sin \theta $
Differentiate both sides,
$dx = \cos \theta d\theta $
When $x = 0$, $\theta = {\sin ^{ - 1}}0 = 0$
And when $x = \dfrac{{\sqrt 3 }}{2}$, $\theta = {\sin ^{ - 1}}\dfrac{{\sqrt 3 }}{2} = \dfrac{\pi }{3}$
Using this, we will get
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \right)\cos \theta d\theta } \]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}} \right)\cos \theta d\theta } \] [$\therefore \sqrt {1 - {{\sin }^2}\theta } = \cos \theta $]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {{{\sin }^2}\theta d\theta } \] ….. (v)
We know that,
$ \Rightarrow \cos 2x = 1 - 2{\sin ^2}x$
So,
$ \Rightarrow {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$
Hence equation (v) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{1 - \cos 2x}}{2}d\theta } \]
Integrating this, we will get
\[ \Rightarrow 2\left[ {\dfrac{\theta }{2} - \dfrac{{\sin 2\theta }}{4}} \right]_0^{\dfrac{\pi }{3}}\]
\[ \Rightarrow 2\left[ {\left( {\dfrac{\pi }{6} - \dfrac{{\sin \dfrac{{2\pi }}{3}}}{4}} \right) - \left( {\dfrac{0}{2} - \dfrac{{\sin 20}}{4}} \right)} \right]\]
\[ \Rightarrow 2\left[ {\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{8} - 0} \right]\]
\[ \Rightarrow \dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
Hence, we can say that the value of $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $ is \[\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
So, the correct answer is “Option B”.
Note: when the differential equation is in the form $\dfrac{{dx}}{{dy}} + Rx = S$, then
Step 1: write the differential equation in the form $\dfrac{{dx}}{{dy}} + Rx = S$ and obtain R and S.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Rdy} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to y to obtain $x\left( {I.F.} \right) = \int {S\left( {I.F.} \right)dy + C} $, which gives the required solution.
Step 1: write the differential equation in the form $\dfrac{{dy}}{{dx}} + Py = Q$ and obtain P and Q.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Pdx} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to x to obtain $y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $, which gives the required solution.
Complete step-by-step answer:
Given that,
Differential equation is:
$\dfrac{{dy}}{{dx}} + \dfrac{{xy}}{{{x^2} - 1}} = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$ …….. (i)
Comparing this with the general form of differential equation, i.e. $\dfrac{{dy}}{{dx}} + Py = Q$
We get,
$ \Rightarrow P = \dfrac{x}{{{x^2} - 1}}$ and $Q = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$
We know that,
Integration factor (I.F.) is given by,
$I.F. = {e^{\int {Pdx} }}$
Putting the value of P, we will get
$ \Rightarrow I.F. = {e^{\int {\dfrac{x}{{{x^2} - 1}}dx} }}$ ……… (ii)
First, we will find $\int {\dfrac{x}{{{x^2} - 1}}} dx$
So, let $t = {x^2} - 1$
Differentiate both sides,
$dt = 2xdx$
$\dfrac{{dt}}{2} = xdx$
Using this, we can write the above integration as:
$ \Rightarrow \int {\dfrac{1}{t}} \dfrac{{dt}}{2}$
Integrating this, we will get
$ \Rightarrow \dfrac{1}{2}\ln \left| t \right| + C$
Replace $t = {x^2} - 1$,
$ \Rightarrow \dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C$
Putting this value in equation (ii), we will get
$ \Rightarrow I.F. = {e^{\dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C}}$
According to the question,
The differential equation satisfies (-1, 1)
So, we can say that,
$\left| {{x^2} - 1} \right| = 1 - {x^2}$
Hence,
$ \Rightarrow I.F. = {e^{\ln \left( {\sqrt {1 - {x^2}} } \right) + C}}$
Solving this, we will get
$ \Rightarrow I.F. = \sqrt {1 - {x^2}} $ [$\therefore {e^{\ln x}} = x$]
Now,
The required solution will be,
$y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $
Putting the required values, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}\sqrt {1 - {x^2}} dx + C} \]
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\left( {{x^4} + 2x} \right)dx + C} \]
Solving this, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\]
we know that,
$y = f\left( x \right)$
So,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\] ……. (iii)
Putting x = 0, we will get
\[ \Rightarrow f\left( 0 \right)\sqrt {1 - {0^2}} = \dfrac{{{0^5}}}{5} + {0^2} + C\]
We have given $f\left( 0 \right) = 0$
Hence, we get
$ \Rightarrow C = 0$
Therefore, equation (iii) will become,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2}\]
\[ \Rightarrow f\left( x \right) = \dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}\]
According to the question, we have to find $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $
Putting the value of f(x),
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} = \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}dx} \]
We can write this as,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} + \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \] ………. (iv)
Using the identity, we know that
$\int\limits_{ - a}^a {f\left( x \right)dx} = 0$, if f is an odd function and,
$\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} $, if f is an even function.
Here we can see that,
\[\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}\] is an odd function.
So,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} = 0\]
Then, equation (iv) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \]
Put $x = \sin \theta $
Differentiate both sides,
$dx = \cos \theta d\theta $
When $x = 0$, $\theta = {\sin ^{ - 1}}0 = 0$
And when $x = \dfrac{{\sqrt 3 }}{2}$, $\theta = {\sin ^{ - 1}}\dfrac{{\sqrt 3 }}{2} = \dfrac{\pi }{3}$
Using this, we will get
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \right)\cos \theta d\theta } \]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}} \right)\cos \theta d\theta } \] [$\therefore \sqrt {1 - {{\sin }^2}\theta } = \cos \theta $]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {{{\sin }^2}\theta d\theta } \] ….. (v)
We know that,
$ \Rightarrow \cos 2x = 1 - 2{\sin ^2}x$
So,
$ \Rightarrow {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$
Hence equation (v) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{1 - \cos 2x}}{2}d\theta } \]
Integrating this, we will get
\[ \Rightarrow 2\left[ {\dfrac{\theta }{2} - \dfrac{{\sin 2\theta }}{4}} \right]_0^{\dfrac{\pi }{3}}\]
\[ \Rightarrow 2\left[ {\left( {\dfrac{\pi }{6} - \dfrac{{\sin \dfrac{{2\pi }}{3}}}{4}} \right) - \left( {\dfrac{0}{2} - \dfrac{{\sin 20}}{4}} \right)} \right]\]
\[ \Rightarrow 2\left[ {\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{8} - 0} \right]\]
\[ \Rightarrow \dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
Hence, we can say that the value of $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $ is \[\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
So, the correct answer is “Option B”.
Note: when the differential equation is in the form $\dfrac{{dx}}{{dy}} + Rx = S$, then
Step 1: write the differential equation in the form $\dfrac{{dx}}{{dy}} + Rx = S$ and obtain R and S.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Rdy} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to y to obtain $x\left( {I.F.} \right) = \int {S\left( {I.F.} \right)dy + C} $, which gives the required solution.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Distinguish between asexual and sexual reproduction class 12 biology CBSE
How do you convert from joules to electron volts class 12 physics CBSE
Derive mirror equation State any three experimental class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE