
The function \[f:R\to \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\]is given by \[f\left( x \right)=2{{\tan }^{-1}}\left( {{e}^{x}} \right)-\dfrac{\pi }{2}\].
Then,
(a) \[f\text{ is even and }{{f}^{'}}\left( x \right)\text{0 for }x>0\]
(b) \[f\text{ is odd and }{{f}^{'}}\left( x \right)\text{0 for all }x\in R\]
(c) \[f\text{ is odd and }{{f}^{'}}\left( x \right)\text{0 for all }x\in R\]
(d) \[f\text{ is neither even nor odd,but }{{f}^{'}}\left( x \right)\text{0 }\forall \text{ }x\in R\]
Answer
608.4k+ views
Hint: Find \[f\left( -x \right)\]and check if \[f\left( x \right)\] is odd or even by comparing it to\[f\left( -x \right)\]. Then find \[{{f}^{'}}\left( x \right)\].
We are given \[f\left( x \right)=2{{\tan }^{-1}}\left( {{e}^{x}} \right)-\dfrac{\pi }{2}\], \[f:R\to \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\]
We have to find if \[f\left( x \right)\] is an odd function or even function. We also have to find the nature of \[{{f}^{'}}\left( x \right)\].
If \[f\left( x \right)=2{{\tan }^{-1}}\left( {{e}^{x}} \right)-\dfrac{\pi }{2}....\left( i \right)\]
Therefore, \[f\left( -x \right)=2{{\tan }^{-1}}\left( {{e}^{-x}} \right)-\dfrac{\pi }{2}....\left( ii \right)\]
Adding equation (i) and (ii)
We get, \[f\left( x \right)+f\left( -x \right)=2{{\tan }^{-1}}\left( {{e}^{-x}} \right)+2{{\tan }^{-1}}\left( {{e}^{-x}} \right)-\dfrac{\pi }{2}-\dfrac{\pi }{2}\]
\[f\left( x \right)+f\left( -x \right)=2\left( {{\tan }^{-1}}\left( {{e}^{x}} \right)+{{\tan }^{-1}}\left( {{e}^{-x}} \right) \right)-\pi \]
Since, we know that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{2}\]where x > 0, y > 0 and xy = 1
Here we know that \[{{e}^{x}}>0,\dfrac{1}{{{e}^{x}}}>0\]and \[{{e}^{x}}.{{e}^{-x}}={{e}^{x}}.\dfrac{1}{{{e}^{x}}}=1\]
Therefore, we get \[f\left( x \right)+f\left( -x \right)=2\left[ \dfrac{\pi }{2} \right]-\pi \]
\[=\pi -\pi =0\]
Since, we got \[f\left( x \right)+f\left( -x \right)=0\]
Therefore, \[f\left( x \right)\]is an odd function.
Now, taking \[f\left( x \right)=2{{\tan }^{-1}}\left( {{e}^{x}} \right)-\dfrac{\pi }{2}\]
By differentiating both sides with respect to x.
We get \[{{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ 2{{\tan }^{-1}}\left( {{e}^{x}} \right)-\dfrac{\pi }{2} \right]\]
Since we know that \[\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}\]
\[\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}\]
\[\dfrac{d}{dx}\left( \text{constant} \right)=0\]
So, we get \[{{f}^{'}}\left( x \right)=\dfrac{2.{{e}^{x}}}{1+{{\left( {{e}^{x}} \right)}^{2}}}\]
Therefore, \[{{f}^{'}}\left( x \right)=\dfrac{2{{e}^{x}}}{1+{{e}^{2x}}}\]
Since, we know that \[{{e}^{x}}>0\text{ for }x\in R\]
Therefore, \[{{e}^{2x}}>0\text{ for }x\in R\]
Hence, \[\dfrac{2{{e}^{x}}}{1+{{e}^{2x}}}>0\text{ for }x\in R\]
Therefore, we get \[{{f}^{'}}\left( x \right)>0\text{ for }x\in R\]
Therefore, \[f\]is odd and \[{{f}^{'}}\left( x \right)>0\text{ for all }x\in R\]
Therefore option (b) is correct.
Note: Students can also observe the odd or even nature of \[f\left( x \right)\] by its graph. If \[f\left( x \right)\]is symmetrical about the x axis then it is even and if \[f\left( x \right)\]is symmetric about origin, it is odd.
We are given \[f\left( x \right)=2{{\tan }^{-1}}\left( {{e}^{x}} \right)-\dfrac{\pi }{2}\], \[f:R\to \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\]
We have to find if \[f\left( x \right)\] is an odd function or even function. We also have to find the nature of \[{{f}^{'}}\left( x \right)\].
If \[f\left( x \right)=2{{\tan }^{-1}}\left( {{e}^{x}} \right)-\dfrac{\pi }{2}....\left( i \right)\]
Therefore, \[f\left( -x \right)=2{{\tan }^{-1}}\left( {{e}^{-x}} \right)-\dfrac{\pi }{2}....\left( ii \right)\]
Adding equation (i) and (ii)
We get, \[f\left( x \right)+f\left( -x \right)=2{{\tan }^{-1}}\left( {{e}^{-x}} \right)+2{{\tan }^{-1}}\left( {{e}^{-x}} \right)-\dfrac{\pi }{2}-\dfrac{\pi }{2}\]
\[f\left( x \right)+f\left( -x \right)=2\left( {{\tan }^{-1}}\left( {{e}^{x}} \right)+{{\tan }^{-1}}\left( {{e}^{-x}} \right) \right)-\pi \]
Since, we know that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{2}\]where x > 0, y > 0 and xy = 1
Here we know that \[{{e}^{x}}>0,\dfrac{1}{{{e}^{x}}}>0\]and \[{{e}^{x}}.{{e}^{-x}}={{e}^{x}}.\dfrac{1}{{{e}^{x}}}=1\]
Therefore, we get \[f\left( x \right)+f\left( -x \right)=2\left[ \dfrac{\pi }{2} \right]-\pi \]
\[=\pi -\pi =0\]
Since, we got \[f\left( x \right)+f\left( -x \right)=0\]
Therefore, \[f\left( x \right)\]is an odd function.
Now, taking \[f\left( x \right)=2{{\tan }^{-1}}\left( {{e}^{x}} \right)-\dfrac{\pi }{2}\]
By differentiating both sides with respect to x.
We get \[{{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ 2{{\tan }^{-1}}\left( {{e}^{x}} \right)-\dfrac{\pi }{2} \right]\]
Since we know that \[\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}\]
\[\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}\]
\[\dfrac{d}{dx}\left( \text{constant} \right)=0\]
So, we get \[{{f}^{'}}\left( x \right)=\dfrac{2.{{e}^{x}}}{1+{{\left( {{e}^{x}} \right)}^{2}}}\]
Therefore, \[{{f}^{'}}\left( x \right)=\dfrac{2{{e}^{x}}}{1+{{e}^{2x}}}\]
Since, we know that \[{{e}^{x}}>0\text{ for }x\in R\]
Therefore, \[{{e}^{2x}}>0\text{ for }x\in R\]
Hence, \[\dfrac{2{{e}^{x}}}{1+{{e}^{2x}}}>0\text{ for }x\in R\]
Therefore, we get \[{{f}^{'}}\left( x \right)>0\text{ for }x\in R\]
Therefore, \[f\]is odd and \[{{f}^{'}}\left( x \right)>0\text{ for all }x\in R\]
Therefore option (b) is correct.
Note: Students can also observe the odd or even nature of \[f\left( x \right)\] by its graph. If \[f\left( x \right)\]is symmetrical about the x axis then it is even and if \[f\left( x \right)\]is symmetric about origin, it is odd.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

