
The function \[f\left( x \right)=\left\{ \begin{align}
& \left| x-3 \right|,\text{ }x\ge 1 \\
& \dfrac{{{x}^{2}}}{4}-\dfrac{3x}{2}+\dfrac{13}{4},\text{ }x<1 \\
\end{align} \right.\] is
(a) continuous at \[x=1\]
(b) differentiable at \[x=1\]
(c) continuous at \[x=3\]
(d) differentiable at \[x=3\]
Answer
606.6k+ views
Hint: If the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] , the function is said to be continuous at \[x=a\]. A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
Complete step-by-step answer:
At \[x=3\], \[f\left( x \right)=\left| x-3 \right|\].
We know \[\left| x-a \right|\] is a function that is continuous everywhere but it is not differentiable at vertex i.e. at \[x=a\].
So , \[f\left( x \right)\]is continuous at \[x=3\] but not differentiable at \[x=3\].
Now , we will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
We will consider the critical point \[x=1\]. To determine differentiability of \[f\left( x \right)\] at \[x=1\], we will evaluate its left-hand derivative.
\[{{L}^{'}}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\left( \dfrac{{{\left( 1-h \right)}^{2}}}{4}-\dfrac{3\left( 1-h \right)}{2}+\dfrac{13}{4} \right)-\left( \dfrac{{{1}^{2}}}{4}-\dfrac{3\left( 1 \right)}{2}+\dfrac{13}{4} \right)}{-h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\dfrac{{{h}^{2}}-2h+1}{4}-\dfrac{3-3h}{2}+\dfrac{13}{4}-\dfrac{1}{4}+\dfrac{3}{2}-\dfrac{13}{4}}{-h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{{{h}^{2}}+4h}{-4h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{h+4}{-4} \right]\]
\[=-1\]
Now , we will evaluate the right-hand derivative of \[f\left( x \right)\] at \[x=1\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| 1+h-3 \right|-\left| 1-3 \right|}{h}\]
Now, we know\[1+h<3\],
So \[\left| 1+h-3 \right|=\left| h-2 \right|=2-h\]
So, \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h-2}{h}\]
\[=-1\]
Clearly, the left hand derivative is equal to the right hand derivative.
Hence \[f\left( x \right)\] is differentiable at \[x=1\].
Now, we also know that if a function is differentiable at a point then it must be continuous at that point.
So, \[f\left( x \right)\] is continuous at \[x=1\].
Hence , the function is differentiable and continuous at \[x=1\] and the function is continuous but not differentiable at \[x=3\].
Answer is (a) , (b) , (c)
Note: A function which is differentiable at a point is necessarily continuous at that point. But a function which is continuous at a point, may or may not be differentiable at that point.
Complete step-by-step answer:
At \[x=3\], \[f\left( x \right)=\left| x-3 \right|\].
We know \[\left| x-a \right|\] is a function that is continuous everywhere but it is not differentiable at vertex i.e. at \[x=a\].
So , \[f\left( x \right)\]is continuous at \[x=3\] but not differentiable at \[x=3\].
Now , we will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
We will consider the critical point \[x=1\]. To determine differentiability of \[f\left( x \right)\] at \[x=1\], we will evaluate its left-hand derivative.
\[{{L}^{'}}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\left( \dfrac{{{\left( 1-h \right)}^{2}}}{4}-\dfrac{3\left( 1-h \right)}{2}+\dfrac{13}{4} \right)-\left( \dfrac{{{1}^{2}}}{4}-\dfrac{3\left( 1 \right)}{2}+\dfrac{13}{4} \right)}{-h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\dfrac{{{h}^{2}}-2h+1}{4}-\dfrac{3-3h}{2}+\dfrac{13}{4}-\dfrac{1}{4}+\dfrac{3}{2}-\dfrac{13}{4}}{-h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{{{h}^{2}}+4h}{-4h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{h+4}{-4} \right]\]
\[=-1\]
Now , we will evaluate the right-hand derivative of \[f\left( x \right)\] at \[x=1\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| 1+h-3 \right|-\left| 1-3 \right|}{h}\]
Now, we know\[1+h<3\],
So \[\left| 1+h-3 \right|=\left| h-2 \right|=2-h\]
So, \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h-2}{h}\]
\[=-1\]
Clearly, the left hand derivative is equal to the right hand derivative.
Hence \[f\left( x \right)\] is differentiable at \[x=1\].
Now, we also know that if a function is differentiable at a point then it must be continuous at that point.
So, \[f\left( x \right)\] is continuous at \[x=1\].
Hence , the function is differentiable and continuous at \[x=1\] and the function is continuous but not differentiable at \[x=3\].
Answer is (a) , (b) , (c)
Note: A function which is differentiable at a point is necessarily continuous at that point. But a function which is continuous at a point, may or may not be differentiable at that point.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

