
The formula for the velocity of electromagnetic wave in vacuum is given by
A.) \[c=\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}\]
B.) \[c=\dfrac{1}{\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}}\]
C.) \[c=\sqrt{\dfrac{{{\mu }_{0}}}{{{\varepsilon }_{0}}}}\]
D.) \[c=\sqrt{\dfrac{{{\varepsilon }_{0}}}{{{\mu }_{0}}}}\]
Answer
593.7k+ views
Hint: Recall the values of \[{{\mu }_{_{0}}}\]and \[{{\varepsilon }_{0}}\], thereafter by rearranging terms and performing basic mathematical calculations, students will get the required formula easily.
Complete step by step answer:
We know that the values of \[\dfrac{{{\mu }_{_{0}}}}{4\pi }\]and \[\dfrac{1}{4\pi {{\varepsilon }_{0}}}\]are as follows:
\[\dfrac{{{\mu }_{_{0}}}}{4\pi }={{10}^{-7}}H/m\]--------(1)
\[\dfrac{1}{4\pi {{\varepsilon }_{0}}}=9\times {{10}^{9}}N-{{m}^{2}}/{{C}^{2}}\]--------(2)
On rearranging terms, the value of \[{{\mu }_{_{0}}}\]and \[{{\varepsilon }_{0}}\]is given by,
\[{{\mu }_{_{0}}}=4\pi \times {{10}^{-7}}H/m\]--------(3)
\[{{\varepsilon }_{0}}=4\pi \times 9\times {{10}^{9}}N-{{m}^{2}}/{{C}^{2}}\]--------(4)
Now on multiplying equations (3) and (4), we get
\[\Rightarrow {{\mu }_{_{0}}}{{\varepsilon }_{0}}=4\pi \times {{10}^{-7}}\times \dfrac{1}{4\pi \times 9\times {{10}^{9}}}\]
On solving,
\[\Rightarrow {{\mu }_{_{0}}}{{\varepsilon }_{0}}=\dfrac{1}{9\times {{10}^{16}}}\]
This may be written as,
\[\Rightarrow {{\mu }_{_{0}}}{{\varepsilon }_{0}}=\dfrac{1}{{{\left( 3\times {{10}^{8}} \right)}^{2}}}\]
We know that the speed of light in vacuum is, \[\text{c=3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{8}}}\text{m/s}\]
\[\Rightarrow {{\mu }_{_{0}}}{{\varepsilon }_{0}}=\dfrac{1}{{{\left( c \right)}^{2}}}\]
\[\Rightarrow {{\left( c \right)}^{2}}=\dfrac{1}{{{\mu }_{_{0}}}{{\varepsilon }_{0}}}\]
On taking square root,
\[\Rightarrow c=\dfrac{1}{\sqrt{{{\mu }_{_{0}}}{{\varepsilon }_{0}}}}\]
Hence, the correct option is B, i.e., \[c=\dfrac{1}{\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}}\]
Additional Information:
Here, \[{{\varepsilon }_{0}}\] is the permittivity of free space. Basically, this is a mathematical quantity that represents how much electric field is permitted (penetrated) in free space or vacuum.
In this solution, \[\dfrac{1}{4\pi {{\varepsilon }_{0}}}=9\times {{10}^{9}}N-{{m}^{2}}/{{C}^{2}}\]this number tells us that \[9\times {{10}^{9}}\]field lines are crossing by a charge in a vacuum but for any medium, this number may change and the number of field lines penetrating is also changed.
Also \[{{\mu }_{_{0}}}\]is the permeability of free space (vacuum) is a physical constant equal to \[1.257\times {{10}^{-6}}H/m\](approximately). Permeability in general is symbolized by µ, and is a constant of proportionality that exists between magnetic flux density and magnetic field strength in a given medium. In certain metals, notably iron and nickel and alloys containing them, µ is greater than \[{{\mu }_{_{0}}}\].
Note: Students should try to memorize this kind of very usual relationship. If they do not remember then it is a better option to write basic rememberable values of \[{{\varepsilon }_{0}}\] and \[{{\mu }_{_{0}}}\] thereafter performing some calculation and rearranging of terms they will get final relation easily.
Complete step by step answer:
We know that the values of \[\dfrac{{{\mu }_{_{0}}}}{4\pi }\]and \[\dfrac{1}{4\pi {{\varepsilon }_{0}}}\]are as follows:
\[\dfrac{{{\mu }_{_{0}}}}{4\pi }={{10}^{-7}}H/m\]--------(1)
\[\dfrac{1}{4\pi {{\varepsilon }_{0}}}=9\times {{10}^{9}}N-{{m}^{2}}/{{C}^{2}}\]--------(2)
On rearranging terms, the value of \[{{\mu }_{_{0}}}\]and \[{{\varepsilon }_{0}}\]is given by,
\[{{\mu }_{_{0}}}=4\pi \times {{10}^{-7}}H/m\]--------(3)
\[{{\varepsilon }_{0}}=4\pi \times 9\times {{10}^{9}}N-{{m}^{2}}/{{C}^{2}}\]--------(4)
Now on multiplying equations (3) and (4), we get
\[\Rightarrow {{\mu }_{_{0}}}{{\varepsilon }_{0}}=4\pi \times {{10}^{-7}}\times \dfrac{1}{4\pi \times 9\times {{10}^{9}}}\]
On solving,
\[\Rightarrow {{\mu }_{_{0}}}{{\varepsilon }_{0}}=\dfrac{1}{9\times {{10}^{16}}}\]
This may be written as,
\[\Rightarrow {{\mu }_{_{0}}}{{\varepsilon }_{0}}=\dfrac{1}{{{\left( 3\times {{10}^{8}} \right)}^{2}}}\]
We know that the speed of light in vacuum is, \[\text{c=3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{8}}}\text{m/s}\]
\[\Rightarrow {{\mu }_{_{0}}}{{\varepsilon }_{0}}=\dfrac{1}{{{\left( c \right)}^{2}}}\]
\[\Rightarrow {{\left( c \right)}^{2}}=\dfrac{1}{{{\mu }_{_{0}}}{{\varepsilon }_{0}}}\]
On taking square root,
\[\Rightarrow c=\dfrac{1}{\sqrt{{{\mu }_{_{0}}}{{\varepsilon }_{0}}}}\]
Hence, the correct option is B, i.e., \[c=\dfrac{1}{\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}}\]
Additional Information:
Here, \[{{\varepsilon }_{0}}\] is the permittivity of free space. Basically, this is a mathematical quantity that represents how much electric field is permitted (penetrated) in free space or vacuum.
In this solution, \[\dfrac{1}{4\pi {{\varepsilon }_{0}}}=9\times {{10}^{9}}N-{{m}^{2}}/{{C}^{2}}\]this number tells us that \[9\times {{10}^{9}}\]field lines are crossing by a charge in a vacuum but for any medium, this number may change and the number of field lines penetrating is also changed.
Also \[{{\mu }_{_{0}}}\]is the permeability of free space (vacuum) is a physical constant equal to \[1.257\times {{10}^{-6}}H/m\](approximately). Permeability in general is symbolized by µ, and is a constant of proportionality that exists between magnetic flux density and magnetic field strength in a given medium. In certain metals, notably iron and nickel and alloys containing them, µ is greater than \[{{\mu }_{_{0}}}\].
Note: Students should try to memorize this kind of very usual relationship. If they do not remember then it is a better option to write basic rememberable values of \[{{\varepsilon }_{0}}\] and \[{{\mu }_{_{0}}}\] thereafter performing some calculation and rearranging of terms they will get final relation easily.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

What is virtual and erect image ?

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

