
The equations $(b-c)x+(c-a)y+(a-b)=0$ and \[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\] will represent the same line, if
A. $b=c$
B. $c=a$
C. $a=b$
D. $a+b+c=0$
E. All the above
Answer
233.1k+ views
Hint: In this question, we are to find the conditions that lead the given equations to be the same line. By the appropriate formula, the required conditions are evaluated. Two equations that represent the same line have equal ratios of their coefficients.
Formula used: The condition for the lines ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ to represent the same line is
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
I.e., the ratios of their respective coefficients are equal to one another.
Complete step by step solution: The given equations of the lines are
$(b-c)x+(c-a)y+(a-b)=0\text{ }...(1)$
\[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\text{ }...(2)\]
For the lines (1) and (2), to represent the same line we have the following condition
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
Here for the given lines, the coefficients are
$\begin{align}
& {{a}_{1}}=(b-c) \\
& {{a}_{2}}=({{b}^{3}}-{{c}^{3}}) \\
& {{b}_{1}}=(c-a) \\
& {{b}_{2}}=({{c}^{3}}-{{a}^{3}}) \\
& {{c}_{1}}=(a-b) \\
& {{c}_{2}}=({{a}^{3}}-{{b}^{3}}) \\
\end{align}$
Then, on substituting these coefficients in the above condition, we get
\[\begin{align}
& \dfrac{(b-c)}{({{b}^{3}}-{{c}^{3}})}=\dfrac{(c-a)}{({{c}^{3}}-{{a}^{3}})}=\dfrac{(a-b)}{({{a}^{3}}-{{b}^{3}})} \\
& \dfrac{(b-c)}{(b-c)({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{(c-a)}{(c-a)({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{(a-b)}{(a-b)({{a}^{2}}+{{b}^{2}}+ab)} \\
& \dfrac{1}{({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{1}{({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{1}{({{a}^{2}}+{{b}^{2}}+ab)} \\
\end{align}\]
From this, we can write
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca\text{ }...(3) \\
& \Rightarrow {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab\text{ }...(4) \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc\text{ }...(5) \\
\end{align}$
Then, on simplifying these equations, we get
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca \\
& \Rightarrow {{a}^{2}}-{{b}^{2}}+ac-bc=0 \\
& \Rightarrow (a+b)(a-b)+c(a-b)=0 \\
& \Rightarrow (a-b)(a+b+c)=0 \\
\end{align}$
Then,
\[\begin{align}
& (a-b)=0;(a+b+c)=0 \\
& \therefore a=b;a+b+c=0\text{ }...(6) \\
\end{align}\]
$\begin{align}
& {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}-{{c}^{2}}+ab-ca=0 \\
& \Rightarrow (b+c)(b-c)+a(b-c)=0 \\
& \Rightarrow (b-c)(b+c+a)=0 \\
\end{align}$
Then,
$\begin{align}
& (b-c)=0;(b+c+a)=0 \\
& \therefore b=c;a+b+c=0\text{ }...(7) \\
\end{align}$
$\begin{align}
& {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}+bc-ab=0 \\
& \Rightarrow (c+a)(c-a)+b(c-a)=0 \\
& \Rightarrow (c-a)(c+a+b)=0 \\
\end{align}$
Then,
$\begin{align}
& (c-a)=0;(c+a+b)=0 \\
& \therefore c=a;a+b+c=0\text{ }...(8) \\
\end{align}$
From (6), (7), and (8), we get
$a=b;b=c;c=a;a+b+c=0$
Thus, Option (E) is correct.
Note: Here we need to remember that, the ratio of coefficients of two lines is equal if they represent the same line. By this, we can get the required values that make them represent the same line.
Formula used: The condition for the lines ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ to represent the same line is
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
I.e., the ratios of their respective coefficients are equal to one another.
Complete step by step solution: The given equations of the lines are
$(b-c)x+(c-a)y+(a-b)=0\text{ }...(1)$
\[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\text{ }...(2)\]
For the lines (1) and (2), to represent the same line we have the following condition
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
Here for the given lines, the coefficients are
$\begin{align}
& {{a}_{1}}=(b-c) \\
& {{a}_{2}}=({{b}^{3}}-{{c}^{3}}) \\
& {{b}_{1}}=(c-a) \\
& {{b}_{2}}=({{c}^{3}}-{{a}^{3}}) \\
& {{c}_{1}}=(a-b) \\
& {{c}_{2}}=({{a}^{3}}-{{b}^{3}}) \\
\end{align}$
Then, on substituting these coefficients in the above condition, we get
\[\begin{align}
& \dfrac{(b-c)}{({{b}^{3}}-{{c}^{3}})}=\dfrac{(c-a)}{({{c}^{3}}-{{a}^{3}})}=\dfrac{(a-b)}{({{a}^{3}}-{{b}^{3}})} \\
& \dfrac{(b-c)}{(b-c)({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{(c-a)}{(c-a)({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{(a-b)}{(a-b)({{a}^{2}}+{{b}^{2}}+ab)} \\
& \dfrac{1}{({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{1}{({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{1}{({{a}^{2}}+{{b}^{2}}+ab)} \\
\end{align}\]
From this, we can write
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca\text{ }...(3) \\
& \Rightarrow {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab\text{ }...(4) \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc\text{ }...(5) \\
\end{align}$
Then, on simplifying these equations, we get
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca \\
& \Rightarrow {{a}^{2}}-{{b}^{2}}+ac-bc=0 \\
& \Rightarrow (a+b)(a-b)+c(a-b)=0 \\
& \Rightarrow (a-b)(a+b+c)=0 \\
\end{align}$
Then,
\[\begin{align}
& (a-b)=0;(a+b+c)=0 \\
& \therefore a=b;a+b+c=0\text{ }...(6) \\
\end{align}\]
$\begin{align}
& {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}-{{c}^{2}}+ab-ca=0 \\
& \Rightarrow (b+c)(b-c)+a(b-c)=0 \\
& \Rightarrow (b-c)(b+c+a)=0 \\
\end{align}$
Then,
$\begin{align}
& (b-c)=0;(b+c+a)=0 \\
& \therefore b=c;a+b+c=0\text{ }...(7) \\
\end{align}$
$\begin{align}
& {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}+bc-ab=0 \\
& \Rightarrow (c+a)(c-a)+b(c-a)=0 \\
& \Rightarrow (c-a)(c+a+b)=0 \\
\end{align}$
Then,
$\begin{align}
& (c-a)=0;(c+a+b)=0 \\
& \therefore c=a;a+b+c=0\text{ }...(8) \\
\end{align}$
From (6), (7), and (8), we get
$a=b;b=c;c=a;a+b+c=0$
Thus, Option (E) is correct.
Note: Here we need to remember that, the ratio of coefficients of two lines is equal if they represent the same line. By this, we can get the required values that make them represent the same line.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

Other Pages
NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

NCERT Solutions For Class 11 Maths Chapter 13 Statistics (2025-26)

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Statistics Class 11 Maths Chapter 13 CBSE Notes - 2025-26

Understanding Collisions: Types and Examples for Students

