
The equation $\sin x\left( \sin x+\cos x \right)=k$ has real solutions, where ‘k’ is a real number. Then
(a) $0\le k\le \dfrac{1+\sqrt{2}}{2}$
(b) $2-\sqrt{3}\le k\le 2+\sqrt{3}$
(c) $0\le k\le 2-\sqrt{3}$
(d) $\dfrac{1-\sqrt{2}}{2}\le k\le \dfrac{1+\sqrt{2}}{2}$
Answer
610.2k+ views
Hint: Try to use the following identities such as $\cos 2x=1-2{{\sin }^{2}}x,{{\sin }^{2}}x=2\sin x\cos x$ and lastly, $-\sqrt{{{a}^{2}}+{{b}^{2}}}\le a\sin \theta +b\cos \theta \le \sqrt{{{a}^{2}}+{{b}^{2}}}$ to get the desired results.
Complete step-by-step answer:
In the question given, the equation is
$\sin x\left( \sin x+\cos x \right)=k...........\left( i \right)$
Now, we will expand the equation (i), we will get;
$k={{\sin }^{2}}x+\sin x\cos x..............\left( ii \right)$
Now, we know the identity,
$\cos 2x=1-2{{\sin }^{2}}x$
Which can also be written as
$2{{\sin }^{2}}x=1-\cos 2x$
So, ${{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}...........\left( iii \right)$
Now, we will use another identity;
$\sin 2x=2\sin x\cos x$
Which can also be formed as;
$\sin x\cos x=\dfrac{\sin 2x}{2}...........\left( iv \right)$
Now, substituting the results of equation (iii) and (iv) in equation (ii) we get;
$\begin{align}
& k=\dfrac{1}{2}-\dfrac{\cos 2x}{2}+\dfrac{\sin 2x}{2} \\
& \Rightarrow k=\dfrac{1}{2}+\dfrac{\sin 2x}{2}-\dfrac{\cos 2x}{2}.............\left( v \right) \\
\end{align}$
Now, we will use another identity which is;
$-\sqrt{{{a}^{2}}+{{b}^{2}}}\le a\sin \theta +b\cos \theta \le \sqrt{{{a}^{2}}+{{b}^{2}}}$
We can replace $\theta $ by $2x$ and $\dfrac{1}{2}$ in place of $a$ and $-\dfrac{1}{2}$ in place of $b$.
We get;
\[\Rightarrow -\sqrt{{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( -\dfrac{1}{2} \right)}^{2}}}\le \left( \dfrac{1}{2} \right)\sin \left( 2x \right)+\left( -\dfrac{1}{2} \right)\cos 2x\le \sqrt{{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( -\dfrac{1}{2} \right)}^{2}}}\]
Solving this, we get
\[\begin{align}
& \Rightarrow -\sqrt{\dfrac{1}{4}+\dfrac{1}{4}}\le \dfrac{1}{2}\sin 2x-\dfrac{1}{2}\cos 2x\le \sqrt{\dfrac{1}{4}+\dfrac{1}{4}} \\
& \Rightarrow -\dfrac{1}{\sqrt{2}}\le \dfrac{1}{2}\sin 2x-\dfrac{1}{2}\cos 2x\le \dfrac{1}{\sqrt{2}} \\
\end{align}\]
Now we will add $\dfrac{1}{2}$ to all the sides of inequality. We get;
$\dfrac{1}{2}-\dfrac{1}{\sqrt{2}}\le \dfrac{1}{2}+\dfrac{1}{2}\sin 2x-\dfrac{1}{2}\cos 2x\le \dfrac{1}{2}+\dfrac{1}{\sqrt{2}}$
Now, we substitute the whole value of $\left( \dfrac{1}{2}+\dfrac{1}{2}\sin 2x-\dfrac{1}{2}\cos 2x \right)$ by $'k'$ from equation (v), we get
$\dfrac{1}{2}-\dfrac{1}{\sqrt{2}}\le k\le \dfrac{1}{2}+\dfrac{1}{\sqrt{2}}$
Taking the LCM, we get
$\dfrac{1-\sqrt{2}}{2}\le k\le \dfrac{1+\sqrt{2}}{2}$
So, the answer is option (d).
Note: In these type of questions student generally get confused while converting $\sin x\cos x$ and ${{\sin }^{2}}x$ in the terms of $\sin 2x\text{ and }\cos 2x$ respectively.
Students generally don’t expand the given equation and start substituting values of different identities as it is, that is directly in the equation $\sin x\left( \sin x+\cos x \right)=k$. In this way they will get confused and will get the wrong answer.
Complete step-by-step answer:
In the question given, the equation is
$\sin x\left( \sin x+\cos x \right)=k...........\left( i \right)$
Now, we will expand the equation (i), we will get;
$k={{\sin }^{2}}x+\sin x\cos x..............\left( ii \right)$
Now, we know the identity,
$\cos 2x=1-2{{\sin }^{2}}x$
Which can also be written as
$2{{\sin }^{2}}x=1-\cos 2x$
So, ${{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}...........\left( iii \right)$
Now, we will use another identity;
$\sin 2x=2\sin x\cos x$
Which can also be formed as;
$\sin x\cos x=\dfrac{\sin 2x}{2}...........\left( iv \right)$
Now, substituting the results of equation (iii) and (iv) in equation (ii) we get;
$\begin{align}
& k=\dfrac{1}{2}-\dfrac{\cos 2x}{2}+\dfrac{\sin 2x}{2} \\
& \Rightarrow k=\dfrac{1}{2}+\dfrac{\sin 2x}{2}-\dfrac{\cos 2x}{2}.............\left( v \right) \\
\end{align}$
Now, we will use another identity which is;
$-\sqrt{{{a}^{2}}+{{b}^{2}}}\le a\sin \theta +b\cos \theta \le \sqrt{{{a}^{2}}+{{b}^{2}}}$
We can replace $\theta $ by $2x$ and $\dfrac{1}{2}$ in place of $a$ and $-\dfrac{1}{2}$ in place of $b$.
We get;
\[\Rightarrow -\sqrt{{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( -\dfrac{1}{2} \right)}^{2}}}\le \left( \dfrac{1}{2} \right)\sin \left( 2x \right)+\left( -\dfrac{1}{2} \right)\cos 2x\le \sqrt{{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( -\dfrac{1}{2} \right)}^{2}}}\]
Solving this, we get
\[\begin{align}
& \Rightarrow -\sqrt{\dfrac{1}{4}+\dfrac{1}{4}}\le \dfrac{1}{2}\sin 2x-\dfrac{1}{2}\cos 2x\le \sqrt{\dfrac{1}{4}+\dfrac{1}{4}} \\
& \Rightarrow -\dfrac{1}{\sqrt{2}}\le \dfrac{1}{2}\sin 2x-\dfrac{1}{2}\cos 2x\le \dfrac{1}{\sqrt{2}} \\
\end{align}\]
Now we will add $\dfrac{1}{2}$ to all the sides of inequality. We get;
$\dfrac{1}{2}-\dfrac{1}{\sqrt{2}}\le \dfrac{1}{2}+\dfrac{1}{2}\sin 2x-\dfrac{1}{2}\cos 2x\le \dfrac{1}{2}+\dfrac{1}{\sqrt{2}}$
Now, we substitute the whole value of $\left( \dfrac{1}{2}+\dfrac{1}{2}\sin 2x-\dfrac{1}{2}\cos 2x \right)$ by $'k'$ from equation (v), we get
$\dfrac{1}{2}-\dfrac{1}{\sqrt{2}}\le k\le \dfrac{1}{2}+\dfrac{1}{\sqrt{2}}$
Taking the LCM, we get
$\dfrac{1-\sqrt{2}}{2}\le k\le \dfrac{1+\sqrt{2}}{2}$
So, the answer is option (d).
Note: In these type of questions student generally get confused while converting $\sin x\cos x$ and ${{\sin }^{2}}x$ in the terms of $\sin 2x\text{ and }\cos 2x$ respectively.
Students generally don’t expand the given equation and start substituting values of different identities as it is, that is directly in the equation $\sin x\left( \sin x+\cos x \right)=k$. In this way they will get confused and will get the wrong answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

