
The equation of the line joining the origin to the point \[\left( { - 4,{\rm{ }}5} \right)\]is [MP PET \[1984\]]
A) \[5x + 4y = 0\;\;\]
B) \[3x + 4y = 2\]
C) \[5x - 4y = 0\;\]
D) \[4x - 5y = 0\]
Answer
233.1k+ views
Hint: Straight line is a set of infinites points in which all points are linear. Slope of the required line is calculated by using the coordinate of two points. Now, after that two points formula is used to find required equation of straight line.
Formula Used:\[m = \dfrac{{\left( {{y_2} - {y_1}} \right)}}{{\left( {{x_2} - {x_1}} \right)}}\]
Where
m is slope of required line
Equation of line
\[y - {y_1} = \dfrac{{\left( {{y_2} - {y_1}} \right)}}{{\left( {{x_2} - {x_1}} \right)}}\left( {x - {x_1}} \right)\]
Complete step by step solution:Given: Lines passes through origin and \[\left( { - 4,{\rm{ }}5} \right)\]
Equation of a required straight line:
\[m = \dfrac{{\left( {{y_2} - {y_1}} \right)}}{{\left( {{x_2} - {x_1}} \right)}}\]
\[y - {y_1} = \dfrac{{\left( {{y_2} - {y_1}} \right)}}{{\left( {{x_2} - {x_1}} \right)}}\left( {x - {x_1}} \right)\]
Where \[\left( {{x_1},\;{y_1}} \right)\], \[\left( {{x_2},\;{y_2}} \right)\] are two points through which line passes.
\[y = \dfrac{{\left( 5 \right)}}{{\left( { - 4} \right)}}\left( x \right)\] Because line passes through origin
\[ - 4y = 5x\]
\[5x + 4y = 0\]
Option ‘A’ is correct
Note:Here use only two points equation because two points are given through which line is passes. Slope is found by using two points which is lying on lines.
Formula Used:\[m = \dfrac{{\left( {{y_2} - {y_1}} \right)}}{{\left( {{x_2} - {x_1}} \right)}}\]
Where
m is slope of required line
Equation of line
\[y - {y_1} = \dfrac{{\left( {{y_2} - {y_1}} \right)}}{{\left( {{x_2} - {x_1}} \right)}}\left( {x - {x_1}} \right)\]
Complete step by step solution:Given: Lines passes through origin and \[\left( { - 4,{\rm{ }}5} \right)\]
Equation of a required straight line:
\[m = \dfrac{{\left( {{y_2} - {y_1}} \right)}}{{\left( {{x_2} - {x_1}} \right)}}\]
\[y - {y_1} = \dfrac{{\left( {{y_2} - {y_1}} \right)}}{{\left( {{x_2} - {x_1}} \right)}}\left( {x - {x_1}} \right)\]
Where \[\left( {{x_1},\;{y_1}} \right)\], \[\left( {{x_2},\;{y_2}} \right)\] are two points through which line passes.
\[y = \dfrac{{\left( 5 \right)}}{{\left( { - 4} \right)}}\left( x \right)\] Because line passes through origin
\[ - 4y = 5x\]
\[5x + 4y = 0\]
Option ‘A’ is correct
Note:Here use only two points equation because two points are given through which line is passes. Slope is found by using two points which is lying on lines.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding How a Current Loop Acts as a Magnetic Dipole

