
The distance of the point (1, -5, 9), from the planar $\left( {\hat i - \hat j + \hat k} \right) = 5$ measured along the line $r = \hat i + \hat j + \hat k$ is
Answer
569.4k+ views
Hint: To solve this question, we will use the concept of finding the equation of a line parallel to a given line and passing through a given point and also, we will use the distance formula.
Complete step-by-step answer:
Given that,
Equation of plane = $\left( {\hat i - \hat j + \hat k} \right) = 5$
Equation of line = $r = \hat i + \hat j + \hat k$
Given passing point = (1, -5, 9).
First, we will convert these vectors form into Cartesian forms,
So,
Equation of plane in cartesian form will be,
$ \Rightarrow x - y + z = 5$ ……. (i)
Equation of line in cartesian form will be,
$ \Rightarrow x = y = z$ ……… (ii)
According to the question,
The line through which the point (1, -5, 9) is passing, is parallel to the line x = y = z.
As we know that, the equation of a line parallel to a given line and passing through a given point is given by,
$ \Rightarrow \dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}$,
Where a, b and c are the direction cosines of the given line and $\left( {{x_1},{y_1},{z_1}} \right)$ is the given point.
So, the equation of the line parallel to the line $x = y = z$ and passing through the point (1, -5, 9) will be,
$ \Rightarrow \dfrac{{x - 1}}{1} = \dfrac{{y + 5}}{1} = \dfrac{{z - 9}}{1} = \lambda $ [$\lambda $ be any scalar value]
Solving this, we will get
$ \Rightarrow x = \lambda + 1,y = \lambda - 5,z = \lambda + 9$
As we know that, this line is intersecting the given plane, which means this equation must satisfy the equation of plane.
Put these values of x, y and z in equation (i),
$ \Rightarrow \lambda + 1 - \left( {\lambda - 5} \right) + \lambda + 9 = 5$
$ \Rightarrow \lambda + 1 - \lambda + 5 + \lambda + 9 = 5$
$ \Rightarrow \lambda + 10 = 0$
$ \Rightarrow \lambda = - 10$
Now, putting this value in the values of x, y and z, we will get
$ \Rightarrow x = - 10 + 1 = - 9,$
$ \Rightarrow y = - 10 - 5 = - 15,$
$ \Rightarrow z = - 10 + 9 = - 1$
Thus, the point on the plane is (-9, -15, -1).
Now, we will find the distance between the points (1, -5, 9) and (-9, -15, -1) by using the distance formula,
$ \Rightarrow d = \sqrt {{{\left( { - 9 - 1} \right)}^2} + {{\left( { - 15 + 5} \right)}^2} + {{\left( { - 1 - 9} \right)}^2}} $
$ \Rightarrow d = \sqrt {{{\left( { - 10} \right)}^2} + {{\left( { - 10} \right)}^2} + {{\left( { - 10} \right)}^2}} $
$ \Rightarrow d = \sqrt {100 + 100 + 100} $
$ \Rightarrow d = \sqrt {300} $
$ \Rightarrow d = 10\sqrt 3 $ units.
Hence, the distance of the point (1, -5, 9), from the planar $\left( {\hat i - \hat j + \hat k} \right) = 5$ measured along the line $r = \hat i + \hat j + \hat k$ is $10\sqrt 3 $ units.
Note: Whenever we ask such type of question, we also have to remember that the distance of the point $\left( {{x_1},{y_1},{z_1}} \right)$ from the plane $ax + by + cz + d = 0$ is given by $\dfrac{{\left| {a{x_1} + b{y_1} + c{z_1} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}$ and this is also called the foot of the perpendicular from $\left( {{x_1},{y_1},{z_1}} \right)$ to the plane $ax + by + cz + d = 0$
Complete step-by-step answer:
Given that,
Equation of plane = $\left( {\hat i - \hat j + \hat k} \right) = 5$
Equation of line = $r = \hat i + \hat j + \hat k$
Given passing point = (1, -5, 9).
First, we will convert these vectors form into Cartesian forms,
So,
Equation of plane in cartesian form will be,
$ \Rightarrow x - y + z = 5$ ……. (i)
Equation of line in cartesian form will be,
$ \Rightarrow x = y = z$ ……… (ii)
According to the question,
The line through which the point (1, -5, 9) is passing, is parallel to the line x = y = z.
As we know that, the equation of a line parallel to a given line and passing through a given point is given by,
$ \Rightarrow \dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}$,
Where a, b and c are the direction cosines of the given line and $\left( {{x_1},{y_1},{z_1}} \right)$ is the given point.
So, the equation of the line parallel to the line $x = y = z$ and passing through the point (1, -5, 9) will be,
$ \Rightarrow \dfrac{{x - 1}}{1} = \dfrac{{y + 5}}{1} = \dfrac{{z - 9}}{1} = \lambda $ [$\lambda $ be any scalar value]
Solving this, we will get
$ \Rightarrow x = \lambda + 1,y = \lambda - 5,z = \lambda + 9$
As we know that, this line is intersecting the given plane, which means this equation must satisfy the equation of plane.
Put these values of x, y and z in equation (i),
$ \Rightarrow \lambda + 1 - \left( {\lambda - 5} \right) + \lambda + 9 = 5$
$ \Rightarrow \lambda + 1 - \lambda + 5 + \lambda + 9 = 5$
$ \Rightarrow \lambda + 10 = 0$
$ \Rightarrow \lambda = - 10$
Now, putting this value in the values of x, y and z, we will get
$ \Rightarrow x = - 10 + 1 = - 9,$
$ \Rightarrow y = - 10 - 5 = - 15,$
$ \Rightarrow z = - 10 + 9 = - 1$
Thus, the point on the plane is (-9, -15, -1).
Now, we will find the distance between the points (1, -5, 9) and (-9, -15, -1) by using the distance formula,
$ \Rightarrow d = \sqrt {{{\left( { - 9 - 1} \right)}^2} + {{\left( { - 15 + 5} \right)}^2} + {{\left( { - 1 - 9} \right)}^2}} $
$ \Rightarrow d = \sqrt {{{\left( { - 10} \right)}^2} + {{\left( { - 10} \right)}^2} + {{\left( { - 10} \right)}^2}} $
$ \Rightarrow d = \sqrt {100 + 100 + 100} $
$ \Rightarrow d = \sqrt {300} $
$ \Rightarrow d = 10\sqrt 3 $ units.
Hence, the distance of the point (1, -5, 9), from the planar $\left( {\hat i - \hat j + \hat k} \right) = 5$ measured along the line $r = \hat i + \hat j + \hat k$ is $10\sqrt 3 $ units.
Note: Whenever we ask such type of question, we also have to remember that the distance of the point $\left( {{x_1},{y_1},{z_1}} \right)$ from the plane $ax + by + cz + d = 0$ is given by $\dfrac{{\left| {a{x_1} + b{y_1} + c{z_1} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}$ and this is also called the foot of the perpendicular from $\left( {{x_1},{y_1},{z_1}} \right)$ to the plane $ax + by + cz + d = 0$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

