
The differential equation of the family of curves $A{{e}^{3x}}+B{{e}^{5x}}$ where A and B are arbitrary constants is:
[a] $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+8\dfrac{dy}{dx}+15y=0$
[b] $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\dfrac{dy}{dx}+y=0$
[c] $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0$
[d] None of the above
Answer
620.1k+ views
Hint: Try removing the variables A and B by differentiating twice and solving for A and B. Alternatively you can remove by finding the value of A in terms of B, y and x. Then differentiate once and find the value of B in terms of x, y, $\dfrac{dy}{dx}$ and Differentiate again.
Complete step-by-step answer:
Let $y=A{{e}^{3x}}+B{{e}^{5x}}$
Differentiating both sides, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( A{{e}^{3x}}+B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( f(x)+g(x) \right)=\dfrac{d}{dx}\left( f(x) \right)+\dfrac{d}{dx}\left( g(x) \right)$
Using the above property, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( A{{e}^{3x}} \right)+\dfrac{d}{dx}\left( B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( Cg(x) \right)=C\dfrac{d}{dx}g(x)$
Using we get
$\dfrac{dy}{dx}=A\dfrac{d}{dx}{{e}^{3x}}+B\dfrac{d}{dx}{{e}^{5x}}$
Chain rule of differentiation $\dfrac{d}{dx}f\left( g\left( x \right) \right)=\dfrac{d}{d\left( g(x) \right)}f\left( g\left( x \right) \right)\times \dfrac{d}{dx}g(x)$
Using chain rule, we get
$\dfrac{dy}{dx}=A\dfrac{d}{d(3x)}{{e}^{3x}}\dfrac{d}{dx}(3x)+B\dfrac{d}{d(5x)}{{e}^{5x}}\dfrac{d}{dx}(5x)$
We know that $\dfrac{d}{dt}{{e}^{t}}={{e}^{t}}$
\[\Rightarrow \dfrac{dy}{dx}=A{{e}^{3x}}\dfrac{d}{dx}3x+B{{e}^{5x}}\dfrac{d}{dx}5x\]
$\Rightarrow \dfrac{dy}{dx}=A{{e}^{3x}}\times 3+B{{e}^{5x}}\times 5$
$\Rightarrow \dfrac{dy}{dx}=3A{{e}^{3x}}+5B{{e}^{5x}}\text{ (i)}$
Differentiating again we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 3A{{e}^{3x}}+5B{{e}^{3x}} \right)$
We know that $\dfrac{d}{dx}\left( f(x)+g(x) \right)=\dfrac{d}{dx}\left( f(x) \right)+\dfrac{d}{dx}\left( g(x) \right)$
Using the above property, we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 3A{{e}^{3x}} \right)+\dfrac{d}{dx}\left( 5B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( Cg(x) \right)=C\dfrac{d}{dx}g(x)$
Using we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A\dfrac{d}{dx}{{e}^{3x}}+5B\dfrac{d}{dx}{{e}^{5x}}\]
Using chain rule, we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A\dfrac{d}{d(3x)}{{e}^{3x}}\dfrac{d}{dx}3x+5B\dfrac{d}{d(5x)}{{e}^{5x}}\dfrac{d}{dx}5x\]
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A{{e}^{3x}}\times 3+5B{{e}^{5x}}\times 5$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=9A{{e}^{3x}}+25B{{e}^{5x}}\text{ (ii)}$
Multiplying equation (i) by 3 and subtracting (i) from (ii) we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}=9A{{e}^{3x}}-9A{{e}^{3x}}+25B{{e}^{5x}}-15B{{e}^{5x}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}=10B{{e}^{5x}}\]
Dividing both sides by $10{{e}^{5x}}$
$\Rightarrow \dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]{{e}^{-5x}}=B\text{ (iii)}$
Multiplying equation (i) by 5 and subtracting (i) from (ii) we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx}=9{{A}^{3x}}-15{{A}^{3x}}+25B{{e}^{3x}}-25B{{e}^{3x}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx}=-6A{{e}^{3x}}$
Dividing both sides by $-6{{e}^{3x}}$ we get
$\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]{{e}^{-3x}}=A\text{ (iv)}$
Put the value of B and A from (iii) and (iv) in the family equation we get
$y=\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]{{e}^{-3x}}{{e}^{3x}}+\dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]{{e}^{-5x}}{{e}^{5x}}$
$\Rightarrow y=\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]+\dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]$
Multiplying both sides by 30 we get
$30y=-5\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]+3\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]$
Using distributive law $a(b+c)=ab+ac$
$\Rightarrow 30y=-5\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+25\dfrac{dy}{dx}+3\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-9\dfrac{dy}{dx}$
$\Rightarrow 30y=-2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+16\dfrac{dy}{dx}$
Dividing both sides by 2 and transposing all terms to LHS we get
$15y+\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}=0$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0$
Option (c) is correct.
Note: This question can also be solved by using the following property
If $y=A{{e}^{mx}}+B{{e}^{nx}}$ then the differential equation of the family of the curves is $f(D)=0$ where
$f(x)$ is the quadratic with roots m and n.
Here m = 3 and n = 5.
So, f(x) = (x-3)(x-5) = ${{x}^{2}}-8x+15$
Hence the differential equation of the family of curves is f(D) = ${{D}^{2}}-8D+15=0$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15=0$
Alternatively, we have $y=A{{e}^{3x}}+B{{e}^{5x}}$
$\Rightarrow y-B{{e}^{5x}}=A{{e}^{3x}}$
\[\Rightarrow \left( y-B{{e}^{5x}} \right){{e}^{-3x}}=A\]
Differentiating both sides w.r.t x once we get
$\dfrac{d}{dx}\left( \left( y-B{{e}^{5x}} \right){{e}^{-3x}} \right)=\dfrac{dA}{dx}$
Using product rule of differentiation $\dfrac{d}{dx}uv=v\dfrac{du}{dx}+u\dfrac{dv}{dx}$ we get
${{e}^{-3x}}\dfrac{d\left( y-B{{e}^{5x}} \right)}{dx}+\left( y-B{{e}^{5x}} \right)\dfrac{d}{dx}{{e}^{-3x}}=0$
$\Rightarrow {{e}^{-3x}}\left[ \dfrac{dy}{dx}-5B{{e}^{5x}} \right]-3\left( y-B{{e}^{5x}} \right){{e}^{-3x}}=0$
Taking ${{e}^{-3x}}$ common and dividing both sides by ${{e}^{-3x}}$
$\dfrac{{{e}^{-3x}}}{{{e}^{-3x}}}\left[ \dfrac{dy}{dx}-5B{{e}^{5x}}-3y+3B{{e}^{5x}} \right]=\dfrac{0}{{{e}^{-3x}}}$
$\dfrac{dy}{dx}-2B{{e}^{5x}}-3y=0$
$\Rightarrow \dfrac{dy}{dx}-3y=2B{{e}^{5x}}$
$\Rightarrow \dfrac{1}{2}\left[ \dfrac{dy}{dx}-3y \right]{{e}^{-5x}}=B$
Differentiating again we get
$\dfrac{1}{2}\dfrac{d}{dx}\left[ \left( \dfrac{dy}{dx}-3y \right){{e}^{-5x}} \right]=0$
Using product rule of differentiation
$\dfrac{1}{2}{{e}^{-5x}}\dfrac{d}{dx}\left( \dfrac{dy}{dx}-3y \right)+\dfrac{1}{2}\left[ \dfrac{dy}{dx}-3y \right]\dfrac{d}{dx}{{e}^{-5x}}=0$
Taking $\dfrac{{{e}^{-5x}}}{2}$ and transposing to RHS we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}-5\left[ \dfrac{dy}{dx}-3y \right]=0$
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0\]
Complete step-by-step answer:
Let $y=A{{e}^{3x}}+B{{e}^{5x}}$
Differentiating both sides, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( A{{e}^{3x}}+B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( f(x)+g(x) \right)=\dfrac{d}{dx}\left( f(x) \right)+\dfrac{d}{dx}\left( g(x) \right)$
Using the above property, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( A{{e}^{3x}} \right)+\dfrac{d}{dx}\left( B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( Cg(x) \right)=C\dfrac{d}{dx}g(x)$
Using we get
$\dfrac{dy}{dx}=A\dfrac{d}{dx}{{e}^{3x}}+B\dfrac{d}{dx}{{e}^{5x}}$
Chain rule of differentiation $\dfrac{d}{dx}f\left( g\left( x \right) \right)=\dfrac{d}{d\left( g(x) \right)}f\left( g\left( x \right) \right)\times \dfrac{d}{dx}g(x)$
Using chain rule, we get
$\dfrac{dy}{dx}=A\dfrac{d}{d(3x)}{{e}^{3x}}\dfrac{d}{dx}(3x)+B\dfrac{d}{d(5x)}{{e}^{5x}}\dfrac{d}{dx}(5x)$
We know that $\dfrac{d}{dt}{{e}^{t}}={{e}^{t}}$
\[\Rightarrow \dfrac{dy}{dx}=A{{e}^{3x}}\dfrac{d}{dx}3x+B{{e}^{5x}}\dfrac{d}{dx}5x\]
$\Rightarrow \dfrac{dy}{dx}=A{{e}^{3x}}\times 3+B{{e}^{5x}}\times 5$
$\Rightarrow \dfrac{dy}{dx}=3A{{e}^{3x}}+5B{{e}^{5x}}\text{ (i)}$
Differentiating again we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 3A{{e}^{3x}}+5B{{e}^{3x}} \right)$
We know that $\dfrac{d}{dx}\left( f(x)+g(x) \right)=\dfrac{d}{dx}\left( f(x) \right)+\dfrac{d}{dx}\left( g(x) \right)$
Using the above property, we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 3A{{e}^{3x}} \right)+\dfrac{d}{dx}\left( 5B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( Cg(x) \right)=C\dfrac{d}{dx}g(x)$
Using we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A\dfrac{d}{dx}{{e}^{3x}}+5B\dfrac{d}{dx}{{e}^{5x}}\]
Using chain rule, we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A\dfrac{d}{d(3x)}{{e}^{3x}}\dfrac{d}{dx}3x+5B\dfrac{d}{d(5x)}{{e}^{5x}}\dfrac{d}{dx}5x\]
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A{{e}^{3x}}\times 3+5B{{e}^{5x}}\times 5$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=9A{{e}^{3x}}+25B{{e}^{5x}}\text{ (ii)}$
Multiplying equation (i) by 3 and subtracting (i) from (ii) we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}=9A{{e}^{3x}}-9A{{e}^{3x}}+25B{{e}^{5x}}-15B{{e}^{5x}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}=10B{{e}^{5x}}\]
Dividing both sides by $10{{e}^{5x}}$
$\Rightarrow \dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]{{e}^{-5x}}=B\text{ (iii)}$
Multiplying equation (i) by 5 and subtracting (i) from (ii) we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx}=9{{A}^{3x}}-15{{A}^{3x}}+25B{{e}^{3x}}-25B{{e}^{3x}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx}=-6A{{e}^{3x}}$
Dividing both sides by $-6{{e}^{3x}}$ we get
$\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]{{e}^{-3x}}=A\text{ (iv)}$
Put the value of B and A from (iii) and (iv) in the family equation we get
$y=\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]{{e}^{-3x}}{{e}^{3x}}+\dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]{{e}^{-5x}}{{e}^{5x}}$
$\Rightarrow y=\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]+\dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]$
Multiplying both sides by 30 we get
$30y=-5\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]+3\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]$
Using distributive law $a(b+c)=ab+ac$
$\Rightarrow 30y=-5\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+25\dfrac{dy}{dx}+3\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-9\dfrac{dy}{dx}$
$\Rightarrow 30y=-2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+16\dfrac{dy}{dx}$
Dividing both sides by 2 and transposing all terms to LHS we get
$15y+\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}=0$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0$
Option (c) is correct.
Note: This question can also be solved by using the following property
If $y=A{{e}^{mx}}+B{{e}^{nx}}$ then the differential equation of the family of the curves is $f(D)=0$ where
$f(x)$ is the quadratic with roots m and n.
Here m = 3 and n = 5.
So, f(x) = (x-3)(x-5) = ${{x}^{2}}-8x+15$
Hence the differential equation of the family of curves is f(D) = ${{D}^{2}}-8D+15=0$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15=0$
Alternatively, we have $y=A{{e}^{3x}}+B{{e}^{5x}}$
$\Rightarrow y-B{{e}^{5x}}=A{{e}^{3x}}$
\[\Rightarrow \left( y-B{{e}^{5x}} \right){{e}^{-3x}}=A\]
Differentiating both sides w.r.t x once we get
$\dfrac{d}{dx}\left( \left( y-B{{e}^{5x}} \right){{e}^{-3x}} \right)=\dfrac{dA}{dx}$
Using product rule of differentiation $\dfrac{d}{dx}uv=v\dfrac{du}{dx}+u\dfrac{dv}{dx}$ we get
${{e}^{-3x}}\dfrac{d\left( y-B{{e}^{5x}} \right)}{dx}+\left( y-B{{e}^{5x}} \right)\dfrac{d}{dx}{{e}^{-3x}}=0$
$\Rightarrow {{e}^{-3x}}\left[ \dfrac{dy}{dx}-5B{{e}^{5x}} \right]-3\left( y-B{{e}^{5x}} \right){{e}^{-3x}}=0$
Taking ${{e}^{-3x}}$ common and dividing both sides by ${{e}^{-3x}}$
$\dfrac{{{e}^{-3x}}}{{{e}^{-3x}}}\left[ \dfrac{dy}{dx}-5B{{e}^{5x}}-3y+3B{{e}^{5x}} \right]=\dfrac{0}{{{e}^{-3x}}}$
$\dfrac{dy}{dx}-2B{{e}^{5x}}-3y=0$
$\Rightarrow \dfrac{dy}{dx}-3y=2B{{e}^{5x}}$
$\Rightarrow \dfrac{1}{2}\left[ \dfrac{dy}{dx}-3y \right]{{e}^{-5x}}=B$
Differentiating again we get
$\dfrac{1}{2}\dfrac{d}{dx}\left[ \left( \dfrac{dy}{dx}-3y \right){{e}^{-5x}} \right]=0$
Using product rule of differentiation
$\dfrac{1}{2}{{e}^{-5x}}\dfrac{d}{dx}\left( \dfrac{dy}{dx}-3y \right)+\dfrac{1}{2}\left[ \dfrac{dy}{dx}-3y \right]\dfrac{d}{dx}{{e}^{-5x}}=0$
Taking $\dfrac{{{e}^{-5x}}}{2}$ and transposing to RHS we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}-5\left[ \dfrac{dy}{dx}-3y \right]=0$
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

