The differential equation of the family of curves $A{{e}^{3x}}+B{{e}^{5x}}$ where A and B are arbitrary constants is:
[a] $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+8\dfrac{dy}{dx}+15y=0$
[b] $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\dfrac{dy}{dx}+y=0$
[c] $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0$
[d] None of the above
Last updated date: 19th Mar 2023
•
Total views: 304.5k
•
Views today: 8.83k
Answer
304.5k+ views
Hint: Try removing the variables A and B by differentiating twice and solving for A and B. Alternatively you can remove by finding the value of A in terms of B, y and x. Then differentiate once and find the value of B in terms of x, y, $\dfrac{dy}{dx}$ and Differentiate again.
Complete step-by-step answer:
Let $y=A{{e}^{3x}}+B{{e}^{5x}}$
Differentiating both sides, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( A{{e}^{3x}}+B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( f(x)+g(x) \right)=\dfrac{d}{dx}\left( f(x) \right)+\dfrac{d}{dx}\left( g(x) \right)$
Using the above property, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( A{{e}^{3x}} \right)+\dfrac{d}{dx}\left( B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( Cg(x) \right)=C\dfrac{d}{dx}g(x)$
Using we get
$\dfrac{dy}{dx}=A\dfrac{d}{dx}{{e}^{3x}}+B\dfrac{d}{dx}{{e}^{5x}}$
Chain rule of differentiation $\dfrac{d}{dx}f\left( g\left( x \right) \right)=\dfrac{d}{d\left( g(x) \right)}f\left( g\left( x \right) \right)\times \dfrac{d}{dx}g(x)$
Using chain rule, we get
$\dfrac{dy}{dx}=A\dfrac{d}{d(3x)}{{e}^{3x}}\dfrac{d}{dx}(3x)+B\dfrac{d}{d(5x)}{{e}^{5x}}\dfrac{d}{dx}(5x)$
We know that $\dfrac{d}{dt}{{e}^{t}}={{e}^{t}}$
\[\Rightarrow \dfrac{dy}{dx}=A{{e}^{3x}}\dfrac{d}{dx}3x+B{{e}^{5x}}\dfrac{d}{dx}5x\]
$\Rightarrow \dfrac{dy}{dx}=A{{e}^{3x}}\times 3+B{{e}^{5x}}\times 5$
$\Rightarrow \dfrac{dy}{dx}=3A{{e}^{3x}}+5B{{e}^{5x}}\text{ (i)}$
Differentiating again we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 3A{{e}^{3x}}+5B{{e}^{3x}} \right)$
We know that $\dfrac{d}{dx}\left( f(x)+g(x) \right)=\dfrac{d}{dx}\left( f(x) \right)+\dfrac{d}{dx}\left( g(x) \right)$
Using the above property, we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 3A{{e}^{3x}} \right)+\dfrac{d}{dx}\left( 5B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( Cg(x) \right)=C\dfrac{d}{dx}g(x)$
Using we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A\dfrac{d}{dx}{{e}^{3x}}+5B\dfrac{d}{dx}{{e}^{5x}}\]
Using chain rule, we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A\dfrac{d}{d(3x)}{{e}^{3x}}\dfrac{d}{dx}3x+5B\dfrac{d}{d(5x)}{{e}^{5x}}\dfrac{d}{dx}5x\]
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A{{e}^{3x}}\times 3+5B{{e}^{5x}}\times 5$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=9A{{e}^{3x}}+25B{{e}^{5x}}\text{ (ii)}$
Multiplying equation (i) by 3 and subtracting (i) from (ii) we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}=9A{{e}^{3x}}-9A{{e}^{3x}}+25B{{e}^{5x}}-15B{{e}^{5x}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}=10B{{e}^{5x}}\]
Dividing both sides by $10{{e}^{5x}}$
$\Rightarrow \dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]{{e}^{-5x}}=B\text{ (iii)}$
Multiplying equation (i) by 5 and subtracting (i) from (ii) we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx}=9{{A}^{3x}}-15{{A}^{3x}}+25B{{e}^{3x}}-25B{{e}^{3x}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx}=-6A{{e}^{3x}}$
Dividing both sides by $-6{{e}^{3x}}$ we get
$\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]{{e}^{-3x}}=A\text{ (iv)}$
Put the value of B and A from (iii) and (iv) in the family equation we get
$y=\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]{{e}^{-3x}}{{e}^{3x}}+\dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]{{e}^{-5x}}{{e}^{5x}}$
$\Rightarrow y=\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]+\dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]$
Multiplying both sides by 30 we get
$30y=-5\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]+3\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]$
Using distributive law $a(b+c)=ab+ac$
$\Rightarrow 30y=-5\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+25\dfrac{dy}{dx}+3\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-9\dfrac{dy}{dx}$
$\Rightarrow 30y=-2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+16\dfrac{dy}{dx}$
Dividing both sides by 2 and transposing all terms to LHS we get
$15y+\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}=0$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0$
Option (c) is correct.
Note: This question can also be solved by using the following property
If $y=A{{e}^{mx}}+B{{e}^{nx}}$ then the differential equation of the family of the curves is $f(D)=0$ where
$f(x)$ is the quadratic with roots m and n.
Here m = 3 and n = 5.
So, f(x) = (x-3)(x-5) = ${{x}^{2}}-8x+15$
Hence the differential equation of the family of curves is f(D) = ${{D}^{2}}-8D+15=0$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15=0$
Alternatively, we have $y=A{{e}^{3x}}+B{{e}^{5x}}$
$\Rightarrow y-B{{e}^{5x}}=A{{e}^{3x}}$
\[\Rightarrow \left( y-B{{e}^{5x}} \right){{e}^{-3x}}=A\]
Differentiating both sides w.r.t x once we get
$\dfrac{d}{dx}\left( \left( y-B{{e}^{5x}} \right){{e}^{-3x}} \right)=\dfrac{dA}{dx}$
Using product rule of differentiation $\dfrac{d}{dx}uv=v\dfrac{du}{dx}+u\dfrac{dv}{dx}$ we get
${{e}^{-3x}}\dfrac{d\left( y-B{{e}^{5x}} \right)}{dx}+\left( y-B{{e}^{5x}} \right)\dfrac{d}{dx}{{e}^{-3x}}=0$
$\Rightarrow {{e}^{-3x}}\left[ \dfrac{dy}{dx}-5B{{e}^{5x}} \right]-3\left( y-B{{e}^{5x}} \right){{e}^{-3x}}=0$
Taking ${{e}^{-3x}}$ common and dividing both sides by ${{e}^{-3x}}$
$\dfrac{{{e}^{-3x}}}{{{e}^{-3x}}}\left[ \dfrac{dy}{dx}-5B{{e}^{5x}}-3y+3B{{e}^{5x}} \right]=\dfrac{0}{{{e}^{-3x}}}$
$\dfrac{dy}{dx}-2B{{e}^{5x}}-3y=0$
$\Rightarrow \dfrac{dy}{dx}-3y=2B{{e}^{5x}}$
$\Rightarrow \dfrac{1}{2}\left[ \dfrac{dy}{dx}-3y \right]{{e}^{-5x}}=B$
Differentiating again we get
$\dfrac{1}{2}\dfrac{d}{dx}\left[ \left( \dfrac{dy}{dx}-3y \right){{e}^{-5x}} \right]=0$
Using product rule of differentiation
$\dfrac{1}{2}{{e}^{-5x}}\dfrac{d}{dx}\left( \dfrac{dy}{dx}-3y \right)+\dfrac{1}{2}\left[ \dfrac{dy}{dx}-3y \right]\dfrac{d}{dx}{{e}^{-5x}}=0$
Taking $\dfrac{{{e}^{-5x}}}{2}$ and transposing to RHS we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}-5\left[ \dfrac{dy}{dx}-3y \right]=0$
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0\]
Complete step-by-step answer:
Let $y=A{{e}^{3x}}+B{{e}^{5x}}$
Differentiating both sides, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( A{{e}^{3x}}+B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( f(x)+g(x) \right)=\dfrac{d}{dx}\left( f(x) \right)+\dfrac{d}{dx}\left( g(x) \right)$
Using the above property, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( A{{e}^{3x}} \right)+\dfrac{d}{dx}\left( B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( Cg(x) \right)=C\dfrac{d}{dx}g(x)$
Using we get
$\dfrac{dy}{dx}=A\dfrac{d}{dx}{{e}^{3x}}+B\dfrac{d}{dx}{{e}^{5x}}$
Chain rule of differentiation $\dfrac{d}{dx}f\left( g\left( x \right) \right)=\dfrac{d}{d\left( g(x) \right)}f\left( g\left( x \right) \right)\times \dfrac{d}{dx}g(x)$
Using chain rule, we get
$\dfrac{dy}{dx}=A\dfrac{d}{d(3x)}{{e}^{3x}}\dfrac{d}{dx}(3x)+B\dfrac{d}{d(5x)}{{e}^{5x}}\dfrac{d}{dx}(5x)$
We know that $\dfrac{d}{dt}{{e}^{t}}={{e}^{t}}$
\[\Rightarrow \dfrac{dy}{dx}=A{{e}^{3x}}\dfrac{d}{dx}3x+B{{e}^{5x}}\dfrac{d}{dx}5x\]
$\Rightarrow \dfrac{dy}{dx}=A{{e}^{3x}}\times 3+B{{e}^{5x}}\times 5$
$\Rightarrow \dfrac{dy}{dx}=3A{{e}^{3x}}+5B{{e}^{5x}}\text{ (i)}$
Differentiating again we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 3A{{e}^{3x}}+5B{{e}^{3x}} \right)$
We know that $\dfrac{d}{dx}\left( f(x)+g(x) \right)=\dfrac{d}{dx}\left( f(x) \right)+\dfrac{d}{dx}\left( g(x) \right)$
Using the above property, we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 3A{{e}^{3x}} \right)+\dfrac{d}{dx}\left( 5B{{e}^{5x}} \right)$
We know that $\dfrac{d}{dx}\left( Cg(x) \right)=C\dfrac{d}{dx}g(x)$
Using we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A\dfrac{d}{dx}{{e}^{3x}}+5B\dfrac{d}{dx}{{e}^{5x}}\]
Using chain rule, we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A\dfrac{d}{d(3x)}{{e}^{3x}}\dfrac{d}{dx}3x+5B\dfrac{d}{d(5x)}{{e}^{5x}}\dfrac{d}{dx}5x\]
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A{{e}^{3x}}\times 3+5B{{e}^{5x}}\times 5$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=9A{{e}^{3x}}+25B{{e}^{5x}}\text{ (ii)}$
Multiplying equation (i) by 3 and subtracting (i) from (ii) we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}=9A{{e}^{3x}}-9A{{e}^{3x}}+25B{{e}^{5x}}-15B{{e}^{5x}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}=10B{{e}^{5x}}\]
Dividing both sides by $10{{e}^{5x}}$
$\Rightarrow \dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]{{e}^{-5x}}=B\text{ (iii)}$
Multiplying equation (i) by 5 and subtracting (i) from (ii) we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx}=9{{A}^{3x}}-15{{A}^{3x}}+25B{{e}^{3x}}-25B{{e}^{3x}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx}=-6A{{e}^{3x}}$
Dividing both sides by $-6{{e}^{3x}}$ we get
$\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]{{e}^{-3x}}=A\text{ (iv)}$
Put the value of B and A from (iii) and (iv) in the family equation we get
$y=\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]{{e}^{-3x}}{{e}^{3x}}+\dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]{{e}^{-5x}}{{e}^{5x}}$
$\Rightarrow y=\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]+\dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]$
Multiplying both sides by 30 we get
$30y=-5\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]+3\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]$
Using distributive law $a(b+c)=ab+ac$
$\Rightarrow 30y=-5\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+25\dfrac{dy}{dx}+3\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-9\dfrac{dy}{dx}$
$\Rightarrow 30y=-2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+16\dfrac{dy}{dx}$
Dividing both sides by 2 and transposing all terms to LHS we get
$15y+\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}=0$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0$
Option (c) is correct.
Note: This question can also be solved by using the following property
If $y=A{{e}^{mx}}+B{{e}^{nx}}$ then the differential equation of the family of the curves is $f(D)=0$ where
$f(x)$ is the quadratic with roots m and n.
Here m = 3 and n = 5.
So, f(x) = (x-3)(x-5) = ${{x}^{2}}-8x+15$
Hence the differential equation of the family of curves is f(D) = ${{D}^{2}}-8D+15=0$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15=0$
Alternatively, we have $y=A{{e}^{3x}}+B{{e}^{5x}}$
$\Rightarrow y-B{{e}^{5x}}=A{{e}^{3x}}$
\[\Rightarrow \left( y-B{{e}^{5x}} \right){{e}^{-3x}}=A\]
Differentiating both sides w.r.t x once we get
$\dfrac{d}{dx}\left( \left( y-B{{e}^{5x}} \right){{e}^{-3x}} \right)=\dfrac{dA}{dx}$
Using product rule of differentiation $\dfrac{d}{dx}uv=v\dfrac{du}{dx}+u\dfrac{dv}{dx}$ we get
${{e}^{-3x}}\dfrac{d\left( y-B{{e}^{5x}} \right)}{dx}+\left( y-B{{e}^{5x}} \right)\dfrac{d}{dx}{{e}^{-3x}}=0$
$\Rightarrow {{e}^{-3x}}\left[ \dfrac{dy}{dx}-5B{{e}^{5x}} \right]-3\left( y-B{{e}^{5x}} \right){{e}^{-3x}}=0$
Taking ${{e}^{-3x}}$ common and dividing both sides by ${{e}^{-3x}}$
$\dfrac{{{e}^{-3x}}}{{{e}^{-3x}}}\left[ \dfrac{dy}{dx}-5B{{e}^{5x}}-3y+3B{{e}^{5x}} \right]=\dfrac{0}{{{e}^{-3x}}}$
$\dfrac{dy}{dx}-2B{{e}^{5x}}-3y=0$
$\Rightarrow \dfrac{dy}{dx}-3y=2B{{e}^{5x}}$
$\Rightarrow \dfrac{1}{2}\left[ \dfrac{dy}{dx}-3y \right]{{e}^{-5x}}=B$
Differentiating again we get
$\dfrac{1}{2}\dfrac{d}{dx}\left[ \left( \dfrac{dy}{dx}-3y \right){{e}^{-5x}} \right]=0$
Using product rule of differentiation
$\dfrac{1}{2}{{e}^{-5x}}\dfrac{d}{dx}\left( \dfrac{dy}{dx}-3y \right)+\dfrac{1}{2}\left[ \dfrac{dy}{dx}-3y \right]\dfrac{d}{dx}{{e}^{-5x}}=0$
Taking $\dfrac{{{e}^{-5x}}}{2}$ and transposing to RHS we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}-5\left[ \dfrac{dy}{dx}-3y \right]=0$
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0\]
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
