
The differential coefficient O \[f(\log x)\] w.r.t. \[x\] , where \[f(x) = \log x\] is
A. \[\dfrac{x}{{\log x}}\]
B. \[\dfrac{{\log x}}{x}\]
C. \[{(x\log x)^{ - 1}}\]
D.None of these.
Answer
504.6k+ views
Hint: In this problem, we have to find the differential coefficient of the function. First, We need to find the value of the function \[f(\log x)\] by putting into the given function \[f(x) = \log x\] . then we will differentiate the resulting value of \[f(\log x)\] with respect to \[x\] .
We will use the formula \[\dfrac{{dy}}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\] to get the required solution.
Complete step-by-step answer:
The differentiation of the process of finding the rate of change of a given function. This rate of change is called derivative of the function . It is denoted by \[\dfrac{{dy}}{{dx}}\] which in simple terms means rate of change of \[y\] with respect to \[x\] .
In order to determine the given function is \[f(x) = \log x\] .
First we find the value of \[f(\log x)\] by putting into the values of \[x\] . we get,
Let us assume, \[y = f(\log x) = \log (\log x)\] .
Using the formula , \[\dfrac{{dy}}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\] we have ,
\[\dfrac{{dy}}{{dx}}\left( {\log (\log x)} \right) = \dfrac{1}{{\log x}}\] . since, \[x = \log x\]
Now we have to differentiate the above equation with respect to \[x\] .
\[ = \dfrac{1}{{\log x}}\dfrac{{\partial (\log x)}}{{dx}}\] .
The given value of \[y\] is function of function hence differentiating the inner function we have,
\[\dfrac{{dy}}{{dx}} = \dfrac{\operatorname{l} }{{\log x}}\dfrac{{\partial (\log x)}}{{dx}} = \dfrac{1}{{\log x}}\left( {\dfrac{1}{x}} \right) = \dfrac{1}{{x\log x}}\] .
The above result can also be written as
Hence, The differential coefficient O \[f(\log x)\] w.r.t. \[x\] , where \[f(x) = \log x\] is
\[\dfrac{{dy}}{{dx}} = = \dfrac{1}{{x\log x}} = {\left( {x\log x} \right)^{ - 1}}\] .
Hence option C is the correct answer.
So, the correct answer is “Option C”.
Note: We use differentiation to find the rate of change of function .
We use formulas for finding the derivative of the function.
For example \[\dfrac{{dy}}{{dx}}({x^n}) = n{x^{n - 1}}\] , \[\dfrac{{dy}}{{dx}}(\log x) = \dfrac{1}{x}\]
Differentiation of constant is 0.
Differentiation of \[x\] with respect to \[x\] is 1. i.e. \[\dfrac{{dy}}{{dx}}(x) = 1\]
For differentiation of function of function we use chain rule , i.e. we first differentiate the given function and then differentiate the inner function .
For example , let \[y = \log \left( {\log x} \right)\]
Then \[\dfrac{{dy}}{{dx}} = \dfrac{\partial }{{dx}}(\log \log x) = \dfrac{1}{{\log x}} \times \dfrac{\partial }{{dx}}\log x\]
Hence \[\dfrac{{dy}}{{dx}} = \dfrac{1}{{x\log x}}\] .
Similarly we can differentiate function of function.
We will use the formula \[\dfrac{{dy}}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\] to get the required solution.
Complete step-by-step answer:
The differentiation of the process of finding the rate of change of a given function. This rate of change is called derivative of the function . It is denoted by \[\dfrac{{dy}}{{dx}}\] which in simple terms means rate of change of \[y\] with respect to \[x\] .
In order to determine the given function is \[f(x) = \log x\] .
First we find the value of \[f(\log x)\] by putting into the values of \[x\] . we get,
Let us assume, \[y = f(\log x) = \log (\log x)\] .
Using the formula , \[\dfrac{{dy}}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\] we have ,
\[\dfrac{{dy}}{{dx}}\left( {\log (\log x)} \right) = \dfrac{1}{{\log x}}\] . since, \[x = \log x\]
Now we have to differentiate the above equation with respect to \[x\] .
\[ = \dfrac{1}{{\log x}}\dfrac{{\partial (\log x)}}{{dx}}\] .
The given value of \[y\] is function of function hence differentiating the inner function we have,
\[\dfrac{{dy}}{{dx}} = \dfrac{\operatorname{l} }{{\log x}}\dfrac{{\partial (\log x)}}{{dx}} = \dfrac{1}{{\log x}}\left( {\dfrac{1}{x}} \right) = \dfrac{1}{{x\log x}}\] .
The above result can also be written as
Hence, The differential coefficient O \[f(\log x)\] w.r.t. \[x\] , where \[f(x) = \log x\] is
\[\dfrac{{dy}}{{dx}} = = \dfrac{1}{{x\log x}} = {\left( {x\log x} \right)^{ - 1}}\] .
Hence option C is the correct answer.
So, the correct answer is “Option C”.
Note: We use differentiation to find the rate of change of function .
We use formulas for finding the derivative of the function.
For example \[\dfrac{{dy}}{{dx}}({x^n}) = n{x^{n - 1}}\] , \[\dfrac{{dy}}{{dx}}(\log x) = \dfrac{1}{x}\]
Differentiation of constant is 0.
Differentiation of \[x\] with respect to \[x\] is 1. i.e. \[\dfrac{{dy}}{{dx}}(x) = 1\]
For differentiation of function of function we use chain rule , i.e. we first differentiate the given function and then differentiate the inner function .
For example , let \[y = \log \left( {\log x} \right)\]
Then \[\dfrac{{dy}}{{dx}} = \dfrac{\partial }{{dx}}(\log \log x) = \dfrac{1}{{\log x}} \times \dfrac{\partial }{{dx}}\log x\]
Hence \[\dfrac{{dy}}{{dx}} = \dfrac{1}{{x\log x}}\] .
Similarly we can differentiate function of function.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

