Answer
Verified
364.5k+ views
Hint: The differentiation of composite functions containing inverse and some algebraic function can be solved by some suitable substitution, which we can find by observing the algebraic function. Here by observation, we can see that \[x=\,\cos \theta \] will work as it is clearly visible that on putting \[x=\,\cos \theta \], \[2{{x}^{2}}-1\] will change to \[x=\,\cos 2\theta \].
Complete step by step solution:
For a function \[f(x)\] finding \[f'(x)\] or \[\dfrac{dy}{dx}\] at a given point is called finding the derivative of \[f(x)\] at that point. \[\dfrac{dy}{dx}\] or \[f'(x)\] represents the instantaneous rate of change of \[y\] w.r.t \[x\].
Here in the given question, we have to find the derivative of a function w.r.t another function.
mathematically:
Let \[y\,=\,f(x)\] ; \[z\,=\,g(x)\] then \[\dfrac{dy}{dz}\,\,=\,\,\dfrac{dy/dx}{dz/dx}\,\,\,=\,\,\,\dfrac{f'(x)}{g'(x)}\].
Here we have \[y\,=\,\,{{\sec }^{-1}}\left( \dfrac{1}{2{{x}^{2}}-1} \right)\] and \[z\,=\,\sqrt{1-{{x}^{2}}}\].
to find: \[\dfrac{dy}{dz}\]
Let’s solve \[\dfrac{dy}{dx}\] and \[\dfrac{dz}{dx}\] separately.
First \[\dfrac{dy}{dx}\]:
It will be quite convenient if we simplify the given inverse function instead of directly differentiating it using the chain rule.
By observing we can see that we should put \[x=\,\cos \theta \]. Therefore \[y\] becomes
\[y\,=\,\,\,{{\sec }^{-1}}\left( \dfrac{1}{2{{\cos }^{2}}\theta -1} \right)\]
As we know that \[\cos 2\theta \,\,=\,\,{{\cos }^{2}}\theta \,-\,{{\sin }^{2}}\theta \,=\,\,2{{\cos }^{2}}\theta -1\]
Hence \[y\,=\,\,\,{{\sec }^{-1}}\left( \dfrac{1}{2{{\cos }^{2}}\theta -1} \right)\,\,\,=\,\,\,{{\sec }^{-1}}\left( \dfrac{1}{\cos 2\theta } \right)\,\,=\,\,{{\sec }^{-1}}\left( \sec 2\theta \right)\,\,=\,\,2\theta \,\]
As \[x=\,\cos \theta \] alternatively \[\theta \,\,=\,\,{{\cos }^{-1}}x\]
\[\Rightarrow \,\,\,y\,\,=\,\,2\theta \,\,=\,\,2{{\cos }^{-1}}x\].
\[\therefore \,\,\,\,\dfrac{dy}{dx}\,\,\,=\,\,\,\dfrac{d}{dx}(2{{\cos }^{-1}}x)\,\,=\,\,2\times \dfrac{-1}{\sqrt{1-{{x}^{2}}}}\,\,\,=\,\,\,\dfrac{-2}{\sqrt{1-{{x}^{2}}}}\] \[\left\{ \because \,\dfrac{d}{dx}({{\cos }^{-1}}x)\,\,=\,\,\dfrac{-1}{\sqrt{1-{{x}^{2}}}} \right\}\]
Hence \[\dfrac{dy}{dx}\,=\,\dfrac{-2}{\sqrt{1-{{x}^{2}}}}\]
Now \[\dfrac{dz}{dx}\]:
This function can be differentiated by using the chain rule of differentiation.
As \[z\,=\,\sqrt{1-{{x}^{2}}}\]
\[\Rightarrow \,\,\dfrac{dz}{dx}\,=\,\dfrac{d}{dx}(\sqrt{1-{{x}^{2}}})\,=\,\dfrac{1}{\sqrt{1-{{x}^{2}}}}\times \,(0-2x)\,=\,\,\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}\]
Now as we know that \[\dfrac{dy}{dz}\,\,=\,\,\dfrac{dy/dx}{dz/dx}\,\,\,=\,\,\,\dfrac{f'(x)}{g'(x)}\]
Hence, \[\dfrac{dy}{dz}\,\,\,=\,\,\,\dfrac{\dfrac{-2}{\sqrt{1-{{x}^{2}}}}}{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}\,\,\,=\,\,\,\dfrac{-2}{\sqrt{1-{{x}^{2}}}}\times \,\dfrac{\sqrt{1-{{x}^{2}}}}{-2x}\,\,\,=\,\,\,\dfrac{1}{x}\]
Now we need to find the value of \[\dfrac{dy}{dz}\] at \[x=\dfrac{1}{2}\]
\[\therefore \,\,{{\left( \dfrac{dy}{dz} \right)}_{x=\dfrac{1}{2}}}\,\,=\,\,\,\dfrac{1}{\left( \dfrac{1}{2} \right)}\,\,=\,\,2\]
Hence, derivative of \[{{\sec }^{-1}}\left( \dfrac{1}{2{{x}^{2}}-1} \right)\] with respect to \[\sqrt{1-{{x}^{2}}}\] at \[x=\dfrac{1}{2}\] is equals to \[2\].
Note:
As inverse trigonometric functions are defined for a fixed domain so while operating with inverse trigonometric functions we should take care of its domain.
In the function \[{{\sec }^{-1}}(\sec x)\], if the domain is violating then suitable addition or subtracting must be done so that in \[{{\sec }^{-1}}(\sec x)\]its input i.e.,\[x\in \left[ 0,\pi \right]\,-\,\left\{ \dfrac{\pi }{2} \right\}\]
So that we can write \[{{\sec }^{-1}}(\sec x)\,\,=\,\,x\].
Complete step by step solution:
For a function \[f(x)\] finding \[f'(x)\] or \[\dfrac{dy}{dx}\] at a given point is called finding the derivative of \[f(x)\] at that point. \[\dfrac{dy}{dx}\] or \[f'(x)\] represents the instantaneous rate of change of \[y\] w.r.t \[x\].
Here in the given question, we have to find the derivative of a function w.r.t another function.
mathematically:
Let \[y\,=\,f(x)\] ; \[z\,=\,g(x)\] then \[\dfrac{dy}{dz}\,\,=\,\,\dfrac{dy/dx}{dz/dx}\,\,\,=\,\,\,\dfrac{f'(x)}{g'(x)}\].
Here we have \[y\,=\,\,{{\sec }^{-1}}\left( \dfrac{1}{2{{x}^{2}}-1} \right)\] and \[z\,=\,\sqrt{1-{{x}^{2}}}\].
to find: \[\dfrac{dy}{dz}\]
Let’s solve \[\dfrac{dy}{dx}\] and \[\dfrac{dz}{dx}\] separately.
First \[\dfrac{dy}{dx}\]:
It will be quite convenient if we simplify the given inverse function instead of directly differentiating it using the chain rule.
By observing we can see that we should put \[x=\,\cos \theta \]. Therefore \[y\] becomes
\[y\,=\,\,\,{{\sec }^{-1}}\left( \dfrac{1}{2{{\cos }^{2}}\theta -1} \right)\]
As we know that \[\cos 2\theta \,\,=\,\,{{\cos }^{2}}\theta \,-\,{{\sin }^{2}}\theta \,=\,\,2{{\cos }^{2}}\theta -1\]
Hence \[y\,=\,\,\,{{\sec }^{-1}}\left( \dfrac{1}{2{{\cos }^{2}}\theta -1} \right)\,\,\,=\,\,\,{{\sec }^{-1}}\left( \dfrac{1}{\cos 2\theta } \right)\,\,=\,\,{{\sec }^{-1}}\left( \sec 2\theta \right)\,\,=\,\,2\theta \,\]
As \[x=\,\cos \theta \] alternatively \[\theta \,\,=\,\,{{\cos }^{-1}}x\]
\[\Rightarrow \,\,\,y\,\,=\,\,2\theta \,\,=\,\,2{{\cos }^{-1}}x\].
\[\therefore \,\,\,\,\dfrac{dy}{dx}\,\,\,=\,\,\,\dfrac{d}{dx}(2{{\cos }^{-1}}x)\,\,=\,\,2\times \dfrac{-1}{\sqrt{1-{{x}^{2}}}}\,\,\,=\,\,\,\dfrac{-2}{\sqrt{1-{{x}^{2}}}}\] \[\left\{ \because \,\dfrac{d}{dx}({{\cos }^{-1}}x)\,\,=\,\,\dfrac{-1}{\sqrt{1-{{x}^{2}}}} \right\}\]
Hence \[\dfrac{dy}{dx}\,=\,\dfrac{-2}{\sqrt{1-{{x}^{2}}}}\]
Now \[\dfrac{dz}{dx}\]:
This function can be differentiated by using the chain rule of differentiation.
As \[z\,=\,\sqrt{1-{{x}^{2}}}\]
\[\Rightarrow \,\,\dfrac{dz}{dx}\,=\,\dfrac{d}{dx}(\sqrt{1-{{x}^{2}}})\,=\,\dfrac{1}{\sqrt{1-{{x}^{2}}}}\times \,(0-2x)\,=\,\,\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}\]
Now as we know that \[\dfrac{dy}{dz}\,\,=\,\,\dfrac{dy/dx}{dz/dx}\,\,\,=\,\,\,\dfrac{f'(x)}{g'(x)}\]
Hence, \[\dfrac{dy}{dz}\,\,\,=\,\,\,\dfrac{\dfrac{-2}{\sqrt{1-{{x}^{2}}}}}{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}\,\,\,=\,\,\,\dfrac{-2}{\sqrt{1-{{x}^{2}}}}\times \,\dfrac{\sqrt{1-{{x}^{2}}}}{-2x}\,\,\,=\,\,\,\dfrac{1}{x}\]
Now we need to find the value of \[\dfrac{dy}{dz}\] at \[x=\dfrac{1}{2}\]
\[\therefore \,\,{{\left( \dfrac{dy}{dz} \right)}_{x=\dfrac{1}{2}}}\,\,=\,\,\,\dfrac{1}{\left( \dfrac{1}{2} \right)}\,\,=\,\,2\]
Hence, derivative of \[{{\sec }^{-1}}\left( \dfrac{1}{2{{x}^{2}}-1} \right)\] with respect to \[\sqrt{1-{{x}^{2}}}\] at \[x=\dfrac{1}{2}\] is equals to \[2\].
Note:
As inverse trigonometric functions are defined for a fixed domain so while operating with inverse trigonometric functions we should take care of its domain.
In the function \[{{\sec }^{-1}}(\sec x)\], if the domain is violating then suitable addition or subtracting must be done so that in \[{{\sec }^{-1}}(\sec x)\]its input i.e.,\[x\in \left[ 0,\pi \right]\,-\,\left\{ \dfrac{\pi }{2} \right\}\]
So that we can write \[{{\sec }^{-1}}(\sec x)\,\,=\,\,x\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Write a letter to the principal requesting him to grant class 10 english CBSE
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE