
The derivative of \[{\text{co}}{{\text{s}}^{ - 1}}\left( {{\text{2}}{{\text{x}}^2} - 1} \right)\]with respect to \[{\text{co}}{{\text{s}}^{ - 1}}{\text{x}}\]is:
$
{\text{A}}{\text{. }}\dfrac{{ - 1}}{{2\sqrt {1 - {{\text{x}}^2}} }} \\
{\text{B}}{\text{. }}\dfrac{2}{{\text{x}}} \\
{\text{C}}{\text{. 2}} \\
{\text{D}}{\text{. 1 - }}{{\text{x}}^2} \\
$
Answer
578.7k+ views
Hint: In order to find the derivative of one inverse trigonometric function w.r.t another, we perform the differentiation in two parts. We differentiate the first and second terms w.r.t ‘x’ individually and then divide the answers obtained with each other.
Complete step-by-step answer:
Given Data,
\[{\text{co}}{{\text{s}}^{ - 1}}\left( {{\text{2}}{{\text{x}}^2} - 1} \right)\]
\[{\text{co}}{{\text{s}}^{ - 1}}{\text{x}}\]
Let us consider the functions, \[{\text{co}}{{\text{s}}^{ - 1}}\left( {{\text{2}}{{\text{x}}^2} - 1} \right)\]= y and \[{\text{co}}{{\text{s}}^{ - 1}}{\text{x}}\]= z
According to the question we are supposed to find, $ \dfrac{{{\text{dy}}}}{{{\text{dz}}}} $
We find this as follows, we differentiate y and z w.r.t ‘x’ individually and then divide them,
$ \dfrac{{\dfrac{{{\text{dy}}}}{{{\text{dx}}}}}}{{\dfrac{{{\text{dz}}}}{{{\text{dx}}}}}} = \dfrac{{{\text{dy}}}}{{{\text{dz}}}} $ .
Now $ \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{co}}{{\text{s}}^{ - 1}}\left( {{\text{2}}{{\text{x}}^2} - 1} \right)} \right) $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{ - 1}}{{\sqrt {1 - {{\left( {2{{\text{x}}^2} - 1} \right)}^2}} }} \times \left[ {{\text{4x - 0}}} \right] $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{ - 1 \times {\text{4x}}}}{{\sqrt {1 - 4{{\text{x}}^4} - 1 + 4{{\text{x}}^2}} }} $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{ - {\text{4x}}}}{{{\text{2x}}\sqrt {1 - {{\text{x}}^2}} }} $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{ - 2}}{{\sqrt {1 - {{\text{x}}^2}} }}{\text{ - - - }}\left( 1 \right) $
Now $ \dfrac{{{\text{dz}}}}{{{\text{dx}}}} = \dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{co}}{{\text{s}}^{ - 1}}\left( {\text{x}} \right)} \right) $
$ \Rightarrow \dfrac{{{\text{dz}}}}{{{\text{dx}}}} = \dfrac{{ - 1}}{{\sqrt {1 - {{\text{x}}^2}} }}{\text{ - - - }}\left( 2 \right) $
From equation (1) and (2) we can write,
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dz}}}} = \dfrac{{ - 2/\sqrt {1 - {{\text{x}}^2}} }}{{ - 1/\sqrt {1 - {{\text{x}}^2}} }} = 2 $
So, the correct answer is “Option C”.
Note: In order to solve this type of problem the key is to know how to differentiate two terms when both the terms are complicated. This method can be used to simplify terms of any order. The value of differentiation of an inverse trigonometric function can be found by looking at the differentiations of common trigonometric terms. Good knowledge in performing differentiation operations on general terms and the respective formulae is needed to solve these problems.
Complete step-by-step answer:
Given Data,
\[{\text{co}}{{\text{s}}^{ - 1}}\left( {{\text{2}}{{\text{x}}^2} - 1} \right)\]
\[{\text{co}}{{\text{s}}^{ - 1}}{\text{x}}\]
Let us consider the functions, \[{\text{co}}{{\text{s}}^{ - 1}}\left( {{\text{2}}{{\text{x}}^2} - 1} \right)\]= y and \[{\text{co}}{{\text{s}}^{ - 1}}{\text{x}}\]= z
According to the question we are supposed to find, $ \dfrac{{{\text{dy}}}}{{{\text{dz}}}} $
We find this as follows, we differentiate y and z w.r.t ‘x’ individually and then divide them,
$ \dfrac{{\dfrac{{{\text{dy}}}}{{{\text{dx}}}}}}{{\dfrac{{{\text{dz}}}}{{{\text{dx}}}}}} = \dfrac{{{\text{dy}}}}{{{\text{dz}}}} $ .
Now $ \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{co}}{{\text{s}}^{ - 1}}\left( {{\text{2}}{{\text{x}}^2} - 1} \right)} \right) $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{ - 1}}{{\sqrt {1 - {{\left( {2{{\text{x}}^2} - 1} \right)}^2}} }} \times \left[ {{\text{4x - 0}}} \right] $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{ - 1 \times {\text{4x}}}}{{\sqrt {1 - 4{{\text{x}}^4} - 1 + 4{{\text{x}}^2}} }} $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{ - {\text{4x}}}}{{{\text{2x}}\sqrt {1 - {{\text{x}}^2}} }} $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{ - 2}}{{\sqrt {1 - {{\text{x}}^2}} }}{\text{ - - - }}\left( 1 \right) $
Now $ \dfrac{{{\text{dz}}}}{{{\text{dx}}}} = \dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{co}}{{\text{s}}^{ - 1}}\left( {\text{x}} \right)} \right) $
$ \Rightarrow \dfrac{{{\text{dz}}}}{{{\text{dx}}}} = \dfrac{{ - 1}}{{\sqrt {1 - {{\text{x}}^2}} }}{\text{ - - - }}\left( 2 \right) $
From equation (1) and (2) we can write,
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dz}}}} = \dfrac{{ - 2/\sqrt {1 - {{\text{x}}^2}} }}{{ - 1/\sqrt {1 - {{\text{x}}^2}} }} = 2 $
So, the correct answer is “Option C”.
Note: In order to solve this type of problem the key is to know how to differentiate two terms when both the terms are complicated. This method can be used to simplify terms of any order. The value of differentiation of an inverse trigonometric function can be found by looking at the differentiations of common trigonometric terms. Good knowledge in performing differentiation operations on general terms and the respective formulae is needed to solve these problems.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

