Answer
Verified
437.1k+ views
Hint The answer to this question is based on the rate constant of a reaction formula for the first order reaction according to the kinetics which is given by, $k=\dfrac{2.303}{t}\log \dfrac{{{P}_{0}}}{{{P}_{f}}}$ and this leads to the required answer.
Complete answer:
In the lower classes of physical chemistry, we have come across the chapter which deals with the kinetics of the reactions in solution where we have studied the concepts of finding the order of the reaction rate constant and also several other required entities.
Let us now focus on the rate constant which is to be found based on the pressure data which is given.
Now, the decomposition reaction given is,
$2{{N}_{2}}{{O}_{5}}(g)\to 4N{{O}_{2}}(g)+{{O}_{2}}(g)$
The reaction at infinity is nothing but the completion of the reaction. Thus, the product pressure reduces to half value.
Now, according to the data given,
Total pressure at t = 30 min we have,
${{P}_{1}}-2x+4x+x=284.5mm $of $Hg$
\[\Rightarrow {{P}_{1}}+3x=284.5mm\]of $Hg$ …………….(1)
When the reaction completes, the total pressure according to the data given is,
\[2{{P}_{1}}+{}^{{{P}_{1}}}/{}_{2}=584.5mm\]of $Hg$
\[\Rightarrow \dfrac{5{{P}_{1}}}{2}=584.5mm\]of $Hg$
\[\Rightarrow {{P}_{1}}=\dfrac{2\times 584.5}{5}=233.8mm\]of $Hg$
Now, we have to find the value of x.
From equation (1),
\[{{P}_{1}}+3x=284.5mm\] of $Hg$
Now, substituting the value of ${{P}_{1}}$ in this equation number (1), we have
\[233.8mm(Hg)+3x=284.5mm(Hg)\]
\[\Rightarrow 3x=50.7mm\]of $Hg$
Thus, by simplification of the above equation, we have
\[x=16.9mm\] of $Hg$
Now, the rate constant for the first order reaction in terms of initial and final pressure is given by,
$k=\dfrac{2.303}{t}\log \dfrac{{{P}_{0}}}{{{P}_{f}}}$ ……………(2)
Here, we know that${{P}_{0}}=233.8mm $of $Hg$
Now the final pressure thus, will be
\[{{P}_{f}}={{P}_{1}}-2x\]
\[\Rightarrow 233.8mm(Hg)-2\times 16.9mm(Hg)=200mm\] of$Hg$
Now, substituting this in above equation (2),
$k=\dfrac{2.303}{30}\log \dfrac{233.8mm(Hg)}{200mm(Hg)}$
$k=0.00521{{\min }^{-1}}=5.21\times {{10}^{-3}}{{\min }^{-1}}$
Thus, the correct answer is option A) $5.206\times {{10}^{-3}}{{\min }^{-1}}$
Note: Note that the rate constant of the first order or the ${{n}^{th}}$ order reaction can be written in other forms also. In terms of the percentage decomposition data the formula will be $k=\dfrac{2.303}{t}\log \dfrac{a}{a-x}$ and by the rate constant formula, you can find the half life of the first order reaction and also the ${{n}^{th}}$ order reaction
Complete answer:
In the lower classes of physical chemistry, we have come across the chapter which deals with the kinetics of the reactions in solution where we have studied the concepts of finding the order of the reaction rate constant and also several other required entities.
Let us now focus on the rate constant which is to be found based on the pressure data which is given.
Now, the decomposition reaction given is,
$2{{N}_{2}}{{O}_{5}}(g)\to 4N{{O}_{2}}(g)+{{O}_{2}}(g)$
t = 0 | ${{P}_{1}}$ | 0 | 0 |
t = 30 | ${{P}_{1}}-2x$ | + 4x | + x |
t = $\infty $ | ${{P}_{1}}$-${{P}_{1}}$= 0 | 2${{P}_{1}}$ | ${}^{{{P}_{1}}}/{}_{2}$ |
The reaction at infinity is nothing but the completion of the reaction. Thus, the product pressure reduces to half value.
Now, according to the data given,
Total pressure at t = 30 min we have,
${{P}_{1}}-2x+4x+x=284.5mm $of $Hg$
\[\Rightarrow {{P}_{1}}+3x=284.5mm\]of $Hg$ …………….(1)
When the reaction completes, the total pressure according to the data given is,
\[2{{P}_{1}}+{}^{{{P}_{1}}}/{}_{2}=584.5mm\]of $Hg$
\[\Rightarrow \dfrac{5{{P}_{1}}}{2}=584.5mm\]of $Hg$
\[\Rightarrow {{P}_{1}}=\dfrac{2\times 584.5}{5}=233.8mm\]of $Hg$
Now, we have to find the value of x.
From equation (1),
\[{{P}_{1}}+3x=284.5mm\] of $Hg$
Now, substituting the value of ${{P}_{1}}$ in this equation number (1), we have
\[233.8mm(Hg)+3x=284.5mm(Hg)\]
\[\Rightarrow 3x=50.7mm\]of $Hg$
Thus, by simplification of the above equation, we have
\[x=16.9mm\] of $Hg$
Now, the rate constant for the first order reaction in terms of initial and final pressure is given by,
$k=\dfrac{2.303}{t}\log \dfrac{{{P}_{0}}}{{{P}_{f}}}$ ……………(2)
Here, we know that${{P}_{0}}=233.8mm $of $Hg$
Now the final pressure thus, will be
\[{{P}_{f}}={{P}_{1}}-2x\]
\[\Rightarrow 233.8mm(Hg)-2\times 16.9mm(Hg)=200mm\] of$Hg$
Now, substituting this in above equation (2),
$k=\dfrac{2.303}{30}\log \dfrac{233.8mm(Hg)}{200mm(Hg)}$
$k=0.00521{{\min }^{-1}}=5.21\times {{10}^{-3}}{{\min }^{-1}}$
Thus, the correct answer is option A) $5.206\times {{10}^{-3}}{{\min }^{-1}}$
Note: Note that the rate constant of the first order or the ${{n}^{th}}$ order reaction can be written in other forms also. In terms of the percentage decomposition data the formula will be $k=\dfrac{2.303}{t}\log \dfrac{a}{a-x}$ and by the rate constant formula, you can find the half life of the first order reaction and also the ${{n}^{th}}$ order reaction
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE