
The decomposition of $HI$ on the surface of gold:
A)Pseudo first order
B)Zero order
C)First order
D)Second order
Answer
508.8k+ views
Hint: In a chemical kinetics reaction rate constant or reaction rate coefficient, tell us about the rate of the direction and tell us about the direction of a chemical reaction. By just looking at the rate and its S.I.unit, we can tell about the order and the quantity of products and leftover reactants.
Complete answer:
We can say that when a substance A reacts with B to form C then we can say that rate of the reaction:
$
aA + bB \to cC \\
r = k(T){[A]^m}{[B]^n} \\
$
For a reaction as such, the rate of the reaction is directly proportional to molar concentrations of A and B given in the expression of rate. $k(T)$ is the reaction rate constant that depends completely on temperature. The exponents of concentrations A and B, constants are partial orders of reaction and not equal to the stoichiometric coefficient.
The reactions are further divided into different orders according to the number of molar coefficients of the elements on the left side of the reactions or the reactants of the product.
The orders in which they are divided are: -
-Pseudo first order
-Zero order
-First order
-Second order
And so on…
The orders can be pre-decided by seeing the units of the reaction.
Decomposition of $HI$ on the surface of gold is a zero-order reaction. Here, the concentration of the reactants on the metal surface remains constant. Because as the reactants react on the surface, more molecules get absorbed on the surface and thus the rate remains constant.
The order of the reaction of decomposition of $HI$ is zero order.
Note:
As we know that the half-life of a first order reaction or the time taken by the compound to reach the half concentration of what it was before starting the reaction. We get the half time by the expression ${t_{\dfrac{1}{2}}} = \dfrac{{0.693}}{K}$
Complete answer:
We can say that when a substance A reacts with B to form C then we can say that rate of the reaction:
$
aA + bB \to cC \\
r = k(T){[A]^m}{[B]^n} \\
$
For a reaction as such, the rate of the reaction is directly proportional to molar concentrations of A and B given in the expression of rate. $k(T)$ is the reaction rate constant that depends completely on temperature. The exponents of concentrations A and B, constants are partial orders of reaction and not equal to the stoichiometric coefficient.
The reactions are further divided into different orders according to the number of molar coefficients of the elements on the left side of the reactions or the reactants of the product.
The orders in which they are divided are: -
-Pseudo first order
-Zero order
-First order
-Second order
And so on…
The orders can be pre-decided by seeing the units of the reaction.
Decomposition of $HI$ on the surface of gold is a zero-order reaction. Here, the concentration of the reactants on the metal surface remains constant. Because as the reactants react on the surface, more molecules get absorbed on the surface and thus the rate remains constant.
The order of the reaction of decomposition of $HI$ is zero order.
Note:
As we know that the half-life of a first order reaction or the time taken by the compound to reach the half concentration of what it was before starting the reaction. We get the half time by the expression ${t_{\dfrac{1}{2}}} = \dfrac{{0.693}}{K}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

