The curve given by x+y = ${{e}^{xy}}$ has a tangent parallel to the y-axis at the point-
(a) (0, 1)
(b) (1, 0)
(c) (1, 1)
(d) (-1, -1)
Answer
360.9k+ views
Hint: To solve the problem, we should be aware about the formula of tangent to the curve. The formula of tangent to a curve is given by $\dfrac{dy}{dx}$.
Further, for a tangent to be parallel to the y-axis, the slope should be infinity.
Complete step by step solution:
Before we begin to solve the problem, we should know briefly about a tangent to the curve. Basically, a tangent to the curve is a straight line that touches a curve but does not cross it. Thus, to find the tangent at point (x,y), we find $\dfrac{dy}{dx}$ of the curve and then put points (x,y) in the expression. This will be illustrated by solving the above problem.
We have,
x+y = ${{e}^{xy}}$ -- (1)
Now, performing derivative with respect to x on (1). We get,
$\dfrac{d}{dx}(x+y)=\dfrac{d}{dx}({{e}^{xy}})$
1+$\dfrac{dy}{dx}$=${{e}^{xy}}\dfrac{d}{dx}(xy)$
Now, to evaluate $\dfrac{d}{dx}(xy)$, we utilize the product rule to solve this.
According to the product rule, for two functions f(x) and g(x), we have,
$\dfrac{d}{dx}\left( f(x)g(x) \right)=\left[ \dfrac{d}{dx}(f(x)) \right]g(x)+\left[ \dfrac{d}{dx}(g(x)) \right]f(x)$
We will utilize this to solve the below differentiation of xy. Thus, we have,
1+$\dfrac{dy}{dx}$=${{e}^{xy}}\left( x\dfrac{dy}{dx}+y \right)$
$\dfrac{dy}{dx}\left( 1-x{{e}^{xy}} \right)=y{{e}^{xy}}-1$
$\dfrac{dy}{dx}=\dfrac{y{{e}^{xy}}-1}{\left( 1-x{{e}^{xy}} \right)}$
This derivative is evaluated at points (x,y) on the curve x+y = ${{e}^{xy}}$. This is the slope of the curve at point (x,y).
Now, to ensure that the tangent is parallel to the y-axis. For this condition to hold true, the slope of the line should be infinity. Thus, the denominator of slope should be zero. Thus, we get,
$x{{e}^{xy}}$=1 -- (2)
Now, we start putting in options given in the problem. We see that only (1,0) satisfies equation (2).
Note: An alternative approach to solving the above problem would be to find the normal to the curve instead of the tangent. Since, normal to the curve is perpendicular to the tangent at that point. Thus, normal at the point (for the tangent to be parallel to the y-axis) would be 0. The normal to the curve is-
$-\dfrac{dx}{dy}=\dfrac{\left( 1-x{{e}^{xy}} \right)}{y{{e}^{xy}}-1}$
Thus, this should be 0. Similar to the solution, we would again have $x{{e}^{xy}}$=1.
Further, for a tangent to be parallel to the y-axis, the slope should be infinity.
Complete step by step solution:
Before we begin to solve the problem, we should know briefly about a tangent to the curve. Basically, a tangent to the curve is a straight line that touches a curve but does not cross it. Thus, to find the tangent at point (x,y), we find $\dfrac{dy}{dx}$ of the curve and then put points (x,y) in the expression. This will be illustrated by solving the above problem.
We have,
x+y = ${{e}^{xy}}$ -- (1)
Now, performing derivative with respect to x on (1). We get,
$\dfrac{d}{dx}(x+y)=\dfrac{d}{dx}({{e}^{xy}})$
1+$\dfrac{dy}{dx}$=${{e}^{xy}}\dfrac{d}{dx}(xy)$
Now, to evaluate $\dfrac{d}{dx}(xy)$, we utilize the product rule to solve this.
According to the product rule, for two functions f(x) and g(x), we have,
$\dfrac{d}{dx}\left( f(x)g(x) \right)=\left[ \dfrac{d}{dx}(f(x)) \right]g(x)+\left[ \dfrac{d}{dx}(g(x)) \right]f(x)$
We will utilize this to solve the below differentiation of xy. Thus, we have,
1+$\dfrac{dy}{dx}$=${{e}^{xy}}\left( x\dfrac{dy}{dx}+y \right)$
$\dfrac{dy}{dx}\left( 1-x{{e}^{xy}} \right)=y{{e}^{xy}}-1$
$\dfrac{dy}{dx}=\dfrac{y{{e}^{xy}}-1}{\left( 1-x{{e}^{xy}} \right)}$
This derivative is evaluated at points (x,y) on the curve x+y = ${{e}^{xy}}$. This is the slope of the curve at point (x,y).
Now, to ensure that the tangent is parallel to the y-axis. For this condition to hold true, the slope of the line should be infinity. Thus, the denominator of slope should be zero. Thus, we get,
$x{{e}^{xy}}$=1 -- (2)
Now, we start putting in options given in the problem. We see that only (1,0) satisfies equation (2).
Note: An alternative approach to solving the above problem would be to find the normal to the curve instead of the tangent. Since, normal to the curve is perpendicular to the tangent at that point. Thus, normal at the point (for the tangent to be parallel to the y-axis) would be 0. The normal to the curve is-
$-\dfrac{dx}{dy}=\dfrac{\left( 1-x{{e}^{xy}} \right)}{y{{e}^{xy}}-1}$
Thus, this should be 0. Similar to the solution, we would again have $x{{e}^{xy}}$=1.
Last updated date: 22nd Sep 2023
•
Total views: 360.9k
•
Views today: 4.60k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Which are the Top 10 Largest Countries of the World?

Derive an expression for electric potential at point class 12 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
