Answer
Verified
437.1k+ views
Hint: We will first assume the cost of book, notebook and pen to be Rs. x, y and z respectively. After this, we will firm 3 equations as per the given data and thus, we will form a \[3 \times 3\] matrix. Thus, on solving it we will get the answer.
Complete step-by-step solution:
Let us assume that the cost of a book is given by Rs. x, the cost of a notebook be Rs. y and the cost of a pen is Rs. z.
First, since we are given that the cost of 2 books, 6 notebooks and 3 pens is Rs. 40.
$\therefore $ we will get the following equation:-
$ \Rightarrow 2x + 6y + 3z = 40$ ……….(1)
Now, since we are given that the cost of 3 books, 4 notebooks and 2 pens is Rs. 35.
$\therefore $ we will get the following equation:-
$ \Rightarrow 3x + 4y + 2z = 35$ ……….(2)
And, since we are given that the cost of 5 books, 7 notebooks & 4 pens is Rs. 61.
$\therefore $ we will get the following equation:-
$ \Rightarrow 5x + 7y + 4z = 61$ ……….(3)
Now, let us represent (1), (2) and (3) in matrix form to get the following expression:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&6&3 \\
3&4&2 \\
5&7&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{40} \\
{35} \\
{61}
\end{array}} \right]$
Now, let us apply some row transformations so as to get the answer:-
Step 1: First of all we will apply ${R_1} \to {R_1} - {R_2}$. Then, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 - 3}&{6 - 4}&{3 - 2} \\
3&4&2 \\
5&7&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{40 - 35} \\
{35} \\
{61}
\end{array}} \right]$
On simplifying it, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - 1}&2&1 \\
3&4&2 \\
5&7&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5 \\
{35} \\
{61}
\end{array}} \right]$
Step 2: Now, we will apply ${R_1} \to - {R_1}$. Then, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - ( - 1)}&{ - 2}&{ - 1} \\
3&4&2 \\
5&7&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{35} \\
{61}
\end{array}} \right]$
On simplifying it, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
3&4&2 \\
5&7&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{35} \\
{61}
\end{array}} \right]$
Step 3: Now, we will apply ${R_2} \to {R_2} - 3{R_1}$ and ${R_3} \to {R_3} - 5{R_1}$. Then, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
{3 - 3}&{4 + 6}&{2 + 3} \\
{5 - 5}&{7 + 10}&{4 + 5}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{35 + 15} \\
{61 + 25}
\end{array}} \right]$
On simplifying it, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&{10}&5 \\
0&{17}&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{50} \\
{86}
\end{array}} \right]$
Step 4: Now, we will apply ${R_2} \to \dfrac{{{R_2}}}{{10}}$ . Then, we will get:-
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
{\dfrac{0}{{10}}}&{\dfrac{{10}}{{10}}}&{\dfrac{5}{{10}}} \\
0&{17}&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{\dfrac{{50}}{{10}}} \\
{86}
\end{array}} \right]\]
On simplifying it, we will get:-
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&{17}&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
{86}
\end{array}} \right]\]
Step 5: Now, we will apply ${R_3} \to {R_3} - 17{R_2}$ . Then, we will get:-
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&{17 - 17}&{9 - \dfrac{{17}}{2}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
{86 - 85}
\end{array}} \right]\]
On simplifying it, we will get:-
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&0&{\dfrac{1}{2}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
1
\end{array}} \right]\]
Now, we see that we have the following equation from the above matrix:-
$ \Rightarrow x - 2y - z = - 5$ …………….(4)
$ \Rightarrow y + \dfrac{z}{2} = 5$ …………….(5)
$ \Rightarrow \dfrac{z}{2} = 1$ …………….(6)
Now, we can see that from the equation (6), we get:
$ \Rightarrow z = 2$ …………..(7)
Substituting this in (5), we will get:-
$ \Rightarrow y + \dfrac{2}{2} = 5$
$ \Rightarrow y = 4$ ………….(8)
Substituting (7) and (8) in (4):-
$ \Rightarrow x - 2(4) - 2 = - 5$
$ \Rightarrow x - 8 - 2 = - 5$
$ \Rightarrow x = 5$
$\therefore $ We get:- $x = 5,y = 4,z = 2$
Note: The students must notice that we need as many equations as many number of unknown variables we have. Like if we take the example of this question, we have 3 unknown variables and 3 equations.
We can use the matrix method only for solving linear equations (equations with unitary power of any variable). This uses back substitution. We basically try to make an identity matrix or an upper triangular matrix to make easy equations for us.
Complete step-by-step solution:
Let us assume that the cost of a book is given by Rs. x, the cost of a notebook be Rs. y and the cost of a pen is Rs. z.
First, since we are given that the cost of 2 books, 6 notebooks and 3 pens is Rs. 40.
$\therefore $ we will get the following equation:-
$ \Rightarrow 2x + 6y + 3z = 40$ ……….(1)
Now, since we are given that the cost of 3 books, 4 notebooks and 2 pens is Rs. 35.
$\therefore $ we will get the following equation:-
$ \Rightarrow 3x + 4y + 2z = 35$ ……….(2)
And, since we are given that the cost of 5 books, 7 notebooks & 4 pens is Rs. 61.
$\therefore $ we will get the following equation:-
$ \Rightarrow 5x + 7y + 4z = 61$ ……….(3)
Now, let us represent (1), (2) and (3) in matrix form to get the following expression:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&6&3 \\
3&4&2 \\
5&7&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{40} \\
{35} \\
{61}
\end{array}} \right]$
Now, let us apply some row transformations so as to get the answer:-
Step 1: First of all we will apply ${R_1} \to {R_1} - {R_2}$. Then, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 - 3}&{6 - 4}&{3 - 2} \\
3&4&2 \\
5&7&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{40 - 35} \\
{35} \\
{61}
\end{array}} \right]$
On simplifying it, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - 1}&2&1 \\
3&4&2 \\
5&7&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5 \\
{35} \\
{61}
\end{array}} \right]$
Step 2: Now, we will apply ${R_1} \to - {R_1}$. Then, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - ( - 1)}&{ - 2}&{ - 1} \\
3&4&2 \\
5&7&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{35} \\
{61}
\end{array}} \right]$
On simplifying it, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
3&4&2 \\
5&7&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{35} \\
{61}
\end{array}} \right]$
Step 3: Now, we will apply ${R_2} \to {R_2} - 3{R_1}$ and ${R_3} \to {R_3} - 5{R_1}$. Then, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
{3 - 3}&{4 + 6}&{2 + 3} \\
{5 - 5}&{7 + 10}&{4 + 5}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{35 + 15} \\
{61 + 25}
\end{array}} \right]$
On simplifying it, we will get:-
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&{10}&5 \\
0&{17}&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{50} \\
{86}
\end{array}} \right]$
Step 4: Now, we will apply ${R_2} \to \dfrac{{{R_2}}}{{10}}$ . Then, we will get:-
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
{\dfrac{0}{{10}}}&{\dfrac{{10}}{{10}}}&{\dfrac{5}{{10}}} \\
0&{17}&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{\dfrac{{50}}{{10}}} \\
{86}
\end{array}} \right]\]
On simplifying it, we will get:-
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&{17}&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
{86}
\end{array}} \right]\]
Step 5: Now, we will apply ${R_3} \to {R_3} - 17{R_2}$ . Then, we will get:-
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&{17 - 17}&{9 - \dfrac{{17}}{2}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
{86 - 85}
\end{array}} \right]\]
On simplifying it, we will get:-
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&0&{\dfrac{1}{2}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
1
\end{array}} \right]\]
Now, we see that we have the following equation from the above matrix:-
$ \Rightarrow x - 2y - z = - 5$ …………….(4)
$ \Rightarrow y + \dfrac{z}{2} = 5$ …………….(5)
$ \Rightarrow \dfrac{z}{2} = 1$ …………….(6)
Now, we can see that from the equation (6), we get:
$ \Rightarrow z = 2$ …………..(7)
Substituting this in (5), we will get:-
$ \Rightarrow y + \dfrac{2}{2} = 5$
$ \Rightarrow y = 4$ ………….(8)
Substituting (7) and (8) in (4):-
$ \Rightarrow x - 2(4) - 2 = - 5$
$ \Rightarrow x - 8 - 2 = - 5$
$ \Rightarrow x = 5$
$\therefore $ We get:- $x = 5,y = 4,z = 2$
Note: The students must notice that we need as many equations as many number of unknown variables we have. Like if we take the example of this question, we have 3 unknown variables and 3 equations.
We can use the matrix method only for solving linear equations (equations with unitary power of any variable). This uses back substitution. We basically try to make an identity matrix or an upper triangular matrix to make easy equations for us.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE