Answer
Verified
426.3k+ views
Hint: Here, we will find the angle subtended at the origin. We will find the equation of the common chord by using the condition of the common chord. Thus we will find the equation of the common chord. By using the equation of the common chord we will find the angle. Thus we obtain the angle of the common chord subtended at the origin.
Formula Used
Equation of common chord is given by \[{S_1} - {S_2} = 0\]
Complete Step by Step Solution:
We are given that the common chord of \[{x^2} + {y^2} - 4x - 4y = 0\] and \[{x^2} + {y^2} = 16\] subtends at the origin.
Let \[{S_1}:{x^2} + {y^2} - 4x - 4y = 0\] and \[{S_2}:{x^2} + {y^2} - 16 = 0\]
The first equation is of the form of the equation of the circle whose centre is at some point but not at the origin. The second equation is of the form of the equation of the circle whose centre is at the origin.
Equation of common chord is given by \[{S_1} - {S_2} = 0\]
By substituting the equation of the circle, we get
\[ \Rightarrow {S_1} - {S_2} = 0\]
\[ \Rightarrow {x^2} + {y^2} - 4x - 4y - {x^2} - {y^2} + 16 = 0\]
\[ \Rightarrow - 4x - 4y + 16 = 0\]
By changing the signs of the variables, we get
\[ \Rightarrow 4x + 4y - 16 = 0\]
Dividing by 4 on both the sides, we get
\[ \Rightarrow x + y - 4 = 0\]
By rewriting the equation, we get
\[ \Rightarrow x + y = 4\]
Thus the equation of a line is equally inclined at the axes.
We will draw both the circles from the given equations of circles with a common chord at the origin.
Thus the angle subtended by the common chord at origin is \[\dfrac{\pi }{2}\].
Therefore, the common chord of \[{x^2} + {y^2} - 4x - 4y = 0\] and \[{x^2} + {y^2} = 16\] subtends at the origin at an angle equal to \[\dfrac{\pi }{2}\].
Note:
We know that a chord is a straight line segment whose both the end points lie on the circle. We should know that if the chords of the curve are at right angles, then they are said to be perpendicular. Equal chords of a circle are equidistant from the radius of the circle. Equal chords of a circle subtend equal angles at the centre. Also, the common chord of two circles is also the point of intersection of two circles.
Formula Used
Equation of common chord is given by \[{S_1} - {S_2} = 0\]
Complete Step by Step Solution:
We are given that the common chord of \[{x^2} + {y^2} - 4x - 4y = 0\] and \[{x^2} + {y^2} = 16\] subtends at the origin.
Let \[{S_1}:{x^2} + {y^2} - 4x - 4y = 0\] and \[{S_2}:{x^2} + {y^2} - 16 = 0\]
The first equation is of the form of the equation of the circle whose centre is at some point but not at the origin. The second equation is of the form of the equation of the circle whose centre is at the origin.
Equation of common chord is given by \[{S_1} - {S_2} = 0\]
By substituting the equation of the circle, we get
\[ \Rightarrow {S_1} - {S_2} = 0\]
\[ \Rightarrow {x^2} + {y^2} - 4x - 4y - {x^2} - {y^2} + 16 = 0\]
\[ \Rightarrow - 4x - 4y + 16 = 0\]
By changing the signs of the variables, we get
\[ \Rightarrow 4x + 4y - 16 = 0\]
Dividing by 4 on both the sides, we get
\[ \Rightarrow x + y - 4 = 0\]
By rewriting the equation, we get
\[ \Rightarrow x + y = 4\]
Thus the equation of a line is equally inclined at the axes.
We will draw both the circles from the given equations of circles with a common chord at the origin.
Thus the angle subtended by the common chord at origin is \[\dfrac{\pi }{2}\].
Therefore, the common chord of \[{x^2} + {y^2} - 4x - 4y = 0\] and \[{x^2} + {y^2} = 16\] subtends at the origin at an angle equal to \[\dfrac{\pi }{2}\].
Note:
We know that a chord is a straight line segment whose both the end points lie on the circle. We should know that if the chords of the curve are at right angles, then they are said to be perpendicular. Equal chords of a circle are equidistant from the radius of the circle. Equal chords of a circle subtend equal angles at the centre. Also, the common chord of two circles is also the point of intersection of two circles.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it