Answer
Verified
425.4k+ views
Hint: Here, we have to find the value of the variable \[x\]. We have \[\left( {x + 2,x - 1} \right)\] as the center of circle and two points on the circumference of the circle are given as \[\left( {2, - 2} \right)\& \left( {8, - 2} \right)\].we know the distance of the center of the circle from any point on the circumference of the circle is equal to radius. Thus, the distance of the point \[\left( {x + 2,x - 1} \right)\] from the two given points \[\left( {2, - 2} \right)\& \left( {8, - 2} \right)\] is equal.
Complete Complete Step by Step Solution:
First we will draw the diagram of the circle as per the given information.
Given that, a circle passes through points \[\left( {2, - 2} \right)\& \left( {8, - 2} \right)\].
This means that these points lie on the circumference of the circle.
We know that the distance from the center of the circle to any point on the circumference is equal to each other as it is called as radius.
So the distance of both the points from the center is equal.
Now, we will calculate the distance between the point \[\left( {x + 2,x - 1} \right)\] and \[\left( {2, - 2} \right)\] using the distance formula.
Distance of the point \[\left( {x + 2,x - 1} \right)\]and \[\left( {2, - 2} \right)\] \[ = \sqrt {\left[ {{{\left( {x + 2 - 2} \right)}^2} + {{\left( {x - 1 + 2} \right)}^2}} \right]} \]
On further simplification, we get
\[ \Rightarrow \] Distance of the point \[\left( {x + 2,x - 1} \right)\] and \[\left( {2, - 2} \right)\] \[ = \sqrt {\left[ {{x^2} + {{\left( {x + 1} \right)}^2}} \right]} \]……………….\[\left( 1 \right)\]
Now, we will calculate the distance between the point \[\left( {x + 2,x - 1} \right)\] and \[\left( {8, - 2} \right)\] using the distance formula.
Distance of the point \[\left( {x + 2,x - 1} \right)\]and \[\left( {8, - 2} \right)\] \[ = \sqrt {\left[ {{{\left( {x + 2 - 8} \right)}^2} + {{\left( {x - 1 + 2} \right)}^2}} \right]} \]
On further simplification, we get
\[ \Rightarrow \] Distance of the point \[\left( {x + 2,x - 1} \right)\] and \[\left( {8, - 2} \right)\] \[ = \sqrt {\left[ {{{\left( {x - 6} \right)}^2} + {{\left( {x + 1} \right)}^2}} \right]} \]……………….\[\left( 2 \right)\]
Equating equation 1 and equation 2 as both are the radius of the same circle, we get
\[\sqrt {\left[ {{x^2} + {{\left( {x + 1} \right)}^2}} \right]} = \sqrt {\left[ {{{\left( {x - 6} \right)}^2} + {{\left( {x + 1} \right)}^2}} \right]} \]
Squaring on both sides, we cancel the roots. Hence we get,
\[ \Rightarrow {x^2} + {\left( {x + 1} \right)^2} = {\left( {x - 6} \right)^2} + {\left( {x + 1} \right)^2}\]
On simplifying the terms, we get
\[ \Rightarrow {x^2} = {\left( {x - 6} \right)^2}\]
Applying exponents on the bases, we get
\[ \Rightarrow {x^2} = {x^2} - 36 + 12x\]
Rearranging the terms, we get
\[\begin{array}{l} \Rightarrow 12x = 36\\ \Rightarrow x = 3\end{array}\]
Hence, the value of x is 3.
Note:
1) The formula which we have used here for finding the distance between the two points is in two dimensional.
2) The distance formula for three dimensional is different.
3) Say we have to find the distance between the points \[({x_1},{y_1},{z_1})\] and \[({x_2},{y_2},{z_2})\]
4) So the distance between these two points is
\[\sqrt {\left[ {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{({z_2} - {z_1})}^2}} \right]} \]
Complete Complete Step by Step Solution:
First we will draw the diagram of the circle as per the given information.
Given that, a circle passes through points \[\left( {2, - 2} \right)\& \left( {8, - 2} \right)\].
This means that these points lie on the circumference of the circle.
We know that the distance from the center of the circle to any point on the circumference is equal to each other as it is called as radius.
So the distance of both the points from the center is equal.
Now, we will calculate the distance between the point \[\left( {x + 2,x - 1} \right)\] and \[\left( {2, - 2} \right)\] using the distance formula.
Distance of the point \[\left( {x + 2,x - 1} \right)\]and \[\left( {2, - 2} \right)\] \[ = \sqrt {\left[ {{{\left( {x + 2 - 2} \right)}^2} + {{\left( {x - 1 + 2} \right)}^2}} \right]} \]
On further simplification, we get
\[ \Rightarrow \] Distance of the point \[\left( {x + 2,x - 1} \right)\] and \[\left( {2, - 2} \right)\] \[ = \sqrt {\left[ {{x^2} + {{\left( {x + 1} \right)}^2}} \right]} \]……………….\[\left( 1 \right)\]
Now, we will calculate the distance between the point \[\left( {x + 2,x - 1} \right)\] and \[\left( {8, - 2} \right)\] using the distance formula.
Distance of the point \[\left( {x + 2,x - 1} \right)\]and \[\left( {8, - 2} \right)\] \[ = \sqrt {\left[ {{{\left( {x + 2 - 8} \right)}^2} + {{\left( {x - 1 + 2} \right)}^2}} \right]} \]
On further simplification, we get
\[ \Rightarrow \] Distance of the point \[\left( {x + 2,x - 1} \right)\] and \[\left( {8, - 2} \right)\] \[ = \sqrt {\left[ {{{\left( {x - 6} \right)}^2} + {{\left( {x + 1} \right)}^2}} \right]} \]……………….\[\left( 2 \right)\]
Equating equation 1 and equation 2 as both are the radius of the same circle, we get
\[\sqrt {\left[ {{x^2} + {{\left( {x + 1} \right)}^2}} \right]} = \sqrt {\left[ {{{\left( {x - 6} \right)}^2} + {{\left( {x + 1} \right)}^2}} \right]} \]
Squaring on both sides, we cancel the roots. Hence we get,
\[ \Rightarrow {x^2} + {\left( {x + 1} \right)^2} = {\left( {x - 6} \right)^2} + {\left( {x + 1} \right)^2}\]
On simplifying the terms, we get
\[ \Rightarrow {x^2} = {\left( {x - 6} \right)^2}\]
Applying exponents on the bases, we get
\[ \Rightarrow {x^2} = {x^2} - 36 + 12x\]
Rearranging the terms, we get
\[\begin{array}{l} \Rightarrow 12x = 36\\ \Rightarrow x = 3\end{array}\]
Hence, the value of x is 3.
Note:
1) The formula which we have used here for finding the distance between the two points is in two dimensional.
2) The distance formula for three dimensional is different.
3) Say we have to find the distance between the points \[({x_1},{y_1},{z_1})\] and \[({x_2},{y_2},{z_2})\]
4) So the distance between these two points is
\[\sqrt {\left[ {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{({z_2} - {z_1})}^2}} \right]} \]
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE