Answer
Verified
493.8k+ views
Hint: Try to find where the curve cuts the $x$ axis. First try to make a rough sketch. Then find the area under the curve using integral.
First, let’s try visualising the function given to us.
So, first of all let’s try plotting the curve considering various values,
Note that at \[x=0,y=1\], at \[x=-e+1,y=0\] and at \[x=-e,y=-\infty \]
Use above observations to plot the graph of \[y={{\log }_{e}}\left( x+e \right)\].
The shaded region is the required area.
Hence, we can now find the area by integrating the function from $x=1-e$ to $x=0$.
Now, to find the area enclosed by the figure, we can easily integrate in the interval $x\in (1-e,0)$, since in this interval, the position of the curves relative to each other and the $x$ axis remains the same.
The formula of finding the area enclosed by $f(x)$ between $x=a$ and $x=b$ can be written as $=|\int\limits_{a}^{b}{f(x)dx|}$.
So the required area under the curve is,
\[\text{Area}=\int\limits_{1-e}^{0}{{{\log }_{e}}\left( x+e \right)dx}\]
Put \[x+e=u\]
\[\Rightarrow dx=du\] as the derivation of $e$ is zero.
The integral can be written as
\[Area=\int{{{\log }_{e}}\left( u \right)du}\]
We will skip limits for now.
Use integration by parts i.e., $\int{fg'=fg-\int{f'g}}$, in the above expression $f={{\log }_{e}}u,g=u$, so it can be written as
\[\Rightarrow \text{Area}=u{{\log }_{e}}u-\int{\left( \dfrac{d}{x}\left( {{\log }_{e}}u \right) \right)(u).du}\]
Now we know differentiation of ${{\log }_{e}}x$ is $\dfrac{1}{x}$ , so the above equation becomes,
\[\begin{align}
& \Rightarrow \text{Area}=u{{\log }_{e}}u-\int{\dfrac{1}{u}(u).du} \\
& \Rightarrow \text{Area}=u{{\log }_{e}}u-\int{1.du} \\
\end{align}\]
On integrating, we get
\[\Rightarrow \text{Area}=\left[ u{{\log }_{e}}u-u \right]\]
Substituting back the value of $u$ and adding the limits , we get
\[\Rightarrow \text{Area}=\left[ \left( x+e \right){{\log }_{e}}\left( x+e \right)-\left( x+e \right) \right]_{1-e}^{0}\]
Now applying the limits, we get
\[\begin{align}
& \Rightarrow \text{Area}=\left[ \left( 0+e \right){{\log }_{e}}\left( 0+e \right)-\left( 0+e \right) \right]-\left[ \left( 1-e+e \right){{\log }_{e}}\left( 1-e+e \right)-\left( 1-e+e \right) \right] \\
& \Rightarrow \text{Area}=\left[ e{{\log }_{e}}\left( e \right)-e \right]-\left[ (1){{\log }_{e}}\left( 1 \right)-1 \right] \\
\end{align}\]
We know, ${{\log }_{e}}e=1,{{\log }_{e}}1=0$ , so the above equation can be written as
\[\begin{align}
& \Rightarrow \text{Area}=\left[ e(1)-e \right]-\left[ (1)(0)-1 \right] \\
& \Rightarrow \text{Area}=0-\left[ -1 \right]=1 \\
\end{align}\]
Therefore the area under the curve is $1$ sq. units.
Hence the correct answer is option (D).
Answer is option (D)
Note: Another alternate method is by integrating over the $y$ axis rather than the $x$ axis, i.e. finding out the area by integrating using $dy$ instead of $dx$. To do this however, you need to express each of the three lines as a function of $y$, rather than expressing them in terms of $x$, and you need to visualise which curve more to the right relative to the $y$ axis. The curve lying more to the right will be treated like the upper curve, and hence, we can find the area out in that way as well. But this will be complicated.
Another possibility of mistake is that while using integration by parts, students might not change the upper and lower limit appropriately as per substitution.
First, let’s try visualising the function given to us.
So, first of all let’s try plotting the curve considering various values,
Note that at \[x=0,y=1\], at \[x=-e+1,y=0\] and at \[x=-e,y=-\infty \]
Use above observations to plot the graph of \[y={{\log }_{e}}\left( x+e \right)\].
The shaded region is the required area.
Hence, we can now find the area by integrating the function from $x=1-e$ to $x=0$.
Now, to find the area enclosed by the figure, we can easily integrate in the interval $x\in (1-e,0)$, since in this interval, the position of the curves relative to each other and the $x$ axis remains the same.
The formula of finding the area enclosed by $f(x)$ between $x=a$ and $x=b$ can be written as $=|\int\limits_{a}^{b}{f(x)dx|}$.
So the required area under the curve is,
\[\text{Area}=\int\limits_{1-e}^{0}{{{\log }_{e}}\left( x+e \right)dx}\]
Put \[x+e=u\]
\[\Rightarrow dx=du\] as the derivation of $e$ is zero.
The integral can be written as
\[Area=\int{{{\log }_{e}}\left( u \right)du}\]
We will skip limits for now.
Use integration by parts i.e., $\int{fg'=fg-\int{f'g}}$, in the above expression $f={{\log }_{e}}u,g=u$, so it can be written as
\[\Rightarrow \text{Area}=u{{\log }_{e}}u-\int{\left( \dfrac{d}{x}\left( {{\log }_{e}}u \right) \right)(u).du}\]
Now we know differentiation of ${{\log }_{e}}x$ is $\dfrac{1}{x}$ , so the above equation becomes,
\[\begin{align}
& \Rightarrow \text{Area}=u{{\log }_{e}}u-\int{\dfrac{1}{u}(u).du} \\
& \Rightarrow \text{Area}=u{{\log }_{e}}u-\int{1.du} \\
\end{align}\]
On integrating, we get
\[\Rightarrow \text{Area}=\left[ u{{\log }_{e}}u-u \right]\]
Substituting back the value of $u$ and adding the limits , we get
\[\Rightarrow \text{Area}=\left[ \left( x+e \right){{\log }_{e}}\left( x+e \right)-\left( x+e \right) \right]_{1-e}^{0}\]
Now applying the limits, we get
\[\begin{align}
& \Rightarrow \text{Area}=\left[ \left( 0+e \right){{\log }_{e}}\left( 0+e \right)-\left( 0+e \right) \right]-\left[ \left( 1-e+e \right){{\log }_{e}}\left( 1-e+e \right)-\left( 1-e+e \right) \right] \\
& \Rightarrow \text{Area}=\left[ e{{\log }_{e}}\left( e \right)-e \right]-\left[ (1){{\log }_{e}}\left( 1 \right)-1 \right] \\
\end{align}\]
We know, ${{\log }_{e}}e=1,{{\log }_{e}}1=0$ , so the above equation can be written as
\[\begin{align}
& \Rightarrow \text{Area}=\left[ e(1)-e \right]-\left[ (1)(0)-1 \right] \\
& \Rightarrow \text{Area}=0-\left[ -1 \right]=1 \\
\end{align}\]
Therefore the area under the curve is $1$ sq. units.
Hence the correct answer is option (D).
Answer is option (D)
Note: Another alternate method is by integrating over the $y$ axis rather than the $x$ axis, i.e. finding out the area by integrating using $dy$ instead of $dx$. To do this however, you need to express each of the three lines as a function of $y$, rather than expressing them in terms of $x$, and you need to visualise which curve more to the right relative to the $y$ axis. The curve lying more to the right will be treated like the upper curve, and hence, we can find the area out in that way as well. But this will be complicated.
Another possibility of mistake is that while using integration by parts, students might not change the upper and lower limit appropriately as per substitution.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE