Answer
Verified
425.7k+ views
Hint:We know that according to the Bohr model of hydrogen like atom, electron (negative charge) revolves around the nucleus (positive charge). The uniform circular motion of the electron around the nucleus is equivalent to the current loop which has a magnetic dipole moment $\left( {\mu = IA} \right)$ and angular momentum is the product of linear momentum and perpendicular distance.
Complete step by step answer:
From the question, we know that the angular momentum is $J$ and we have developed the expression of the magnetic moment in terms of $J$. Now let us consider an electron revolving counter clockwise a nucleus in an orbit of radius $r$ with speed $v$ and time period $T$.
The above figure represents the orbital magnetic moment of a revolving electron.
The expression of the current in the loop,
$
I = \dfrac{q}{T}\\
\Rightarrow I = \dfrac{e}{T}\\
$
The area of the loop in which current is revolving is,
$A = \pi {r^2}$
The time period of the electron can be expressed as,
$
T = \dfrac{{2\pi }}{\omega }\\
\Rightarrow T = \dfrac{{2\pi r}}{v}\\
$
Here, $\omega $ is the angular velocity of the electron.
We know that the orbital magnetic moment or the magnetic moment due to orbital motion of the electron motion of the electron is expressed as,
$\mu = IA$
Substitute the expression in the above equation.
$\mu = \dfrac{e}{{\left( {\dfrac{{2\pi r}}{v}} \right)}} \times \pi {r^2}$
$\Rightarrow\mu = \dfrac{{evr}}{2}$ ... (I)
Also, the angular momentum of the electron due to its orbital motion,
$J = mvr$ ... (II)
Here, $m$ is the mass of the electron.
From equation (I) and (2), we get,
$
\dfrac{\mu }{J} = \dfrac{{\left( {\dfrac{{evr}}{2}} \right)}}{{mvr}}\\
\therefore \mu = \dfrac{{eJ}}{{2m}}\\
$
Thus, option (B) is correct.
Note:As the electron (negative charge) is revolving counter clockwise, the direction of the current associated to it is clockwise. From the right hand thumb rule, the direction of the magnetic moment of the electron will be perpendicular to the plane of its orbit.
Complete step by step answer:
From the question, we know that the angular momentum is $J$ and we have developed the expression of the magnetic moment in terms of $J$. Now let us consider an electron revolving counter clockwise a nucleus in an orbit of radius $r$ with speed $v$ and time period $T$.
The above figure represents the orbital magnetic moment of a revolving electron.
The expression of the current in the loop,
$
I = \dfrac{q}{T}\\
\Rightarrow I = \dfrac{e}{T}\\
$
The area of the loop in which current is revolving is,
$A = \pi {r^2}$
The time period of the electron can be expressed as,
$
T = \dfrac{{2\pi }}{\omega }\\
\Rightarrow T = \dfrac{{2\pi r}}{v}\\
$
Here, $\omega $ is the angular velocity of the electron.
We know that the orbital magnetic moment or the magnetic moment due to orbital motion of the electron motion of the electron is expressed as,
$\mu = IA$
Substitute the expression in the above equation.
$\mu = \dfrac{e}{{\left( {\dfrac{{2\pi r}}{v}} \right)}} \times \pi {r^2}$
$\Rightarrow\mu = \dfrac{{evr}}{2}$ ... (I)
Also, the angular momentum of the electron due to its orbital motion,
$J = mvr$ ... (II)
Here, $m$ is the mass of the electron.
From equation (I) and (2), we get,
$
\dfrac{\mu }{J} = \dfrac{{\left( {\dfrac{{evr}}{2}} \right)}}{{mvr}}\\
\therefore \mu = \dfrac{{eJ}}{{2m}}\\
$
Thus, option (B) is correct.
Note:As the electron (negative charge) is revolving counter clockwise, the direction of the current associated to it is clockwise. From the right hand thumb rule, the direction of the magnetic moment of the electron will be perpendicular to the plane of its orbit.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE