The angle between two diagonals of cube is
A. $30{}^\circ $
B. $45{}^\circ $
C. ${{\cos }^{-1}}\left( \dfrac{1}{3} \right)$
D. ${{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)$
Last updated date: 24th Mar 2023
•
Total views: 308.7k
•
Views today: 2.86k
Answer
308.7k+ views
Hint: Select a cube and note the diagonals and its points. Select any one pair of diagonals and use the formula of angle between two vectors and solve it. You will get the answer.
So above we can see the Cube.
So the cube is a symmetrical three-dimensional shape, either solid or hollow, contained by six equal squares. The cube is the only regular hexahedron and is one of the five Platonic solids. It has $6$ faces, $12$ edges, and $8$ vertices.
The cube is also a square parallelepiped, an equilateral cuboid and a right rhombohedron. It is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations.
The cube is dual to the octahedron. It has cubical or octahedral symmetry.
The cube is the only convex polyhedron whose faces are all squares.
Cube has its length, breadth and height equal to each other.
Cube It has all its faces in a square shape. In a cube All the faces or sides have equal dimensions.
The plane angles of the cube are the right angle. Each of the faces meets the other four faces.
Each of the vertices meets the three faces and three edges. The edges opposite to each other are parallel.
Let $OABCDEFG$ be a cube with vertices as below,
$O(0,0,0), A(a,0,0), B(a,a,0), C(0,a,0,), D(0,a,a), E(0,0,a), F(a,0,a), G(a,a,a)$
There are four diagonals of the cube: they are $OG,CF,AD$ and $BE$ for the cube.
Let us consider any two say $OG$ and $AD$,
We know that if $A({{x}_{1}},{{y}_{1}},{{z}_{1}})$ and $B({{x}_{2}},{{y}_{2}},{{z}_{2}})$ are two points in space then,
\[\overrightarrow{AB}=({{x}_{2}}-{{x}_{1}})i+({{y}_{2}}-{{y}_{1}})j+({{z}_{2}}-{{z}_{1}})k\]
$\overrightarrow{OG}=(a-0)i+(a-0)j+(a-0)k=ai+aj+ak$
And $\overrightarrow{AD}=(0-a)i+(a-0)j+(a-0)k=-ai+aj+ak$,
So therefore we get the modulus of $\overrightarrow{OG}$ and $\overrightarrow{AD}$,
$\left| \overrightarrow{OG} \right|=\sqrt{{{a}^{2}}+{{a}^{2}}+{{a}^{2}}}=a\sqrt{3}$and$\left| \overrightarrow{AD} \right|=\sqrt{{{(-a)}^{2}}+{{a}^{2}}+{{a}^{2}}}=a\sqrt{3}$
So we know $\overrightarrow{OG}.\overrightarrow{AD}=\left( ai+aj+ak \right).\left( -ai+aj+ak \right)=-{{a}^{2}}\left( i.i \right)+{{a}^{2}}\left( j.j \right)+{{a}^{2}}\left( k.k \right)$
So we know that angle between two vectors $\overrightarrow{a}.\overrightarrow{b}$ is given by,
$\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\overrightarrow{\left| b \right|}} \right)$,
So applying above, so the angle between two diagonals $\overrightarrow{OG}$and$\overrightarrow{AD}$is as follows,
Consider the angle between two diagonals be $\theta $,
So we get the angle as,
$\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{OG}.\overrightarrow{AD}}{\left| \overrightarrow{OG} \right|\left| \overrightarrow{AD} \right|} \right)$
So substituting above values, we get,
$\theta ={{\cos }^{-1}}\left( \dfrac{{{a}^{2}}}{a\sqrt{3}\times a\sqrt{3}} \right)$
So we get,
$\theta ={{\cos }^{-1}}\left( \dfrac{1}{3} \right)$
So the correct answer is option(C).
Note: Be careful about the points$A({{x}_{1}},{{y}_{1}},{{z}_{1}})$and$B({{x}_{2}},{{y}_{2}},{{z}_{2}})$. Sometimes we get confused between the points. So take care of it. The angle between two vectors $\overrightarrow{a}.\overrightarrow{b}$ is $\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\overrightarrow{\left| b \right|}} \right)$. So you should be familiar with the formula. There are four diagonals $OG,CF,AD$ and $BE$. You can consider any one pair of diagonals.

So above we can see the Cube.
So the cube is a symmetrical three-dimensional shape, either solid or hollow, contained by six equal squares. The cube is the only regular hexahedron and is one of the five Platonic solids. It has $6$ faces, $12$ edges, and $8$ vertices.
The cube is also a square parallelepiped, an equilateral cuboid and a right rhombohedron. It is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations.
The cube is dual to the octahedron. It has cubical or octahedral symmetry.
The cube is the only convex polyhedron whose faces are all squares.
Cube has its length, breadth and height equal to each other.
Cube It has all its faces in a square shape. In a cube All the faces or sides have equal dimensions.
The plane angles of the cube are the right angle. Each of the faces meets the other four faces.
Each of the vertices meets the three faces and three edges. The edges opposite to each other are parallel.
Let $OABCDEFG$ be a cube with vertices as below,
$O(0,0,0), A(a,0,0), B(a,a,0), C(0,a,0,), D(0,a,a), E(0,0,a), F(a,0,a), G(a,a,a)$
There are four diagonals of the cube: they are $OG,CF,AD$ and $BE$ for the cube.
Let us consider any two say $OG$ and $AD$,
We know that if $A({{x}_{1}},{{y}_{1}},{{z}_{1}})$ and $B({{x}_{2}},{{y}_{2}},{{z}_{2}})$ are two points in space then,
\[\overrightarrow{AB}=({{x}_{2}}-{{x}_{1}})i+({{y}_{2}}-{{y}_{1}})j+({{z}_{2}}-{{z}_{1}})k\]
$\overrightarrow{OG}=(a-0)i+(a-0)j+(a-0)k=ai+aj+ak$
And $\overrightarrow{AD}=(0-a)i+(a-0)j+(a-0)k=-ai+aj+ak$,
So therefore we get the modulus of $\overrightarrow{OG}$ and $\overrightarrow{AD}$,
$\left| \overrightarrow{OG} \right|=\sqrt{{{a}^{2}}+{{a}^{2}}+{{a}^{2}}}=a\sqrt{3}$and$\left| \overrightarrow{AD} \right|=\sqrt{{{(-a)}^{2}}+{{a}^{2}}+{{a}^{2}}}=a\sqrt{3}$
So we know $\overrightarrow{OG}.\overrightarrow{AD}=\left( ai+aj+ak \right).\left( -ai+aj+ak \right)=-{{a}^{2}}\left( i.i \right)+{{a}^{2}}\left( j.j \right)+{{a}^{2}}\left( k.k \right)$
So we know that angle between two vectors $\overrightarrow{a}.\overrightarrow{b}$ is given by,
$\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\overrightarrow{\left| b \right|}} \right)$,
So applying above, so the angle between two diagonals $\overrightarrow{OG}$and$\overrightarrow{AD}$is as follows,
Consider the angle between two diagonals be $\theta $,
So we get the angle as,
$\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{OG}.\overrightarrow{AD}}{\left| \overrightarrow{OG} \right|\left| \overrightarrow{AD} \right|} \right)$
So substituting above values, we get,
$\theta ={{\cos }^{-1}}\left( \dfrac{{{a}^{2}}}{a\sqrt{3}\times a\sqrt{3}} \right)$
So we get,
$\theta ={{\cos }^{-1}}\left( \dfrac{1}{3} \right)$
So the correct answer is option(C).
Note: Be careful about the points$A({{x}_{1}},{{y}_{1}},{{z}_{1}})$and$B({{x}_{2}},{{y}_{2}},{{z}_{2}})$. Sometimes we get confused between the points. So take care of it. The angle between two vectors $\overrightarrow{a}.\overrightarrow{b}$ is $\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\overrightarrow{\left| b \right|}} \right)$. So you should be familiar with the formula. There are four diagonals $OG,CF,AD$ and $BE$. You can consider any one pair of diagonals.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
