The angle between two diagonals of cube is
A. $30{}^\circ $
B. $45{}^\circ $
C. ${{\cos }^{-1}}\left( \dfrac{1}{3} \right)$
D. ${{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)$
Answer
381.6k+ views
Hint: Select a cube and note the diagonals and its points. Select any one pair of diagonals and use the formula of angle between two vectors and solve it. You will get the answer.
So above we can see the Cube.
So the cube is a symmetrical three-dimensional shape, either solid or hollow, contained by six equal squares. The cube is the only regular hexahedron and is one of the five Platonic solids. It has $6$ faces, $12$ edges, and $8$ vertices.
The cube is also a square parallelepiped, an equilateral cuboid and a right rhombohedron. It is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations.
The cube is dual to the octahedron. It has cubical or octahedral symmetry.
The cube is the only convex polyhedron whose faces are all squares.
Cube has its length, breadth and height equal to each other.
Cube It has all its faces in a square shape. In a cube All the faces or sides have equal dimensions.
The plane angles of the cube are the right angle. Each of the faces meets the other four faces.
Each of the vertices meets the three faces and three edges. The edges opposite to each other are parallel.
Let $OABCDEFG$ be a cube with vertices as below,
$O(0,0,0), A(a,0,0), B(a,a,0), C(0,a,0,), D(0,a,a), E(0,0,a), F(a,0,a), G(a,a,a)$
There are four diagonals of the cube: they are $OG,CF,AD$ and $BE$ for the cube.
Let us consider any two say $OG$ and $AD$,
We know that if $A({{x}_{1}},{{y}_{1}},{{z}_{1}})$ and $B({{x}_{2}},{{y}_{2}},{{z}_{2}})$ are two points in space then,
\[\overrightarrow{AB}=({{x}_{2}}-{{x}_{1}})i+({{y}_{2}}-{{y}_{1}})j+({{z}_{2}}-{{z}_{1}})k\]
$\overrightarrow{OG}=(a-0)i+(a-0)j+(a-0)k=ai+aj+ak$
And $\overrightarrow{AD}=(0-a)i+(a-0)j+(a-0)k=-ai+aj+ak$,
So therefore we get the modulus of $\overrightarrow{OG}$ and $\overrightarrow{AD}$,
$\left| \overrightarrow{OG} \right|=\sqrt{{{a}^{2}}+{{a}^{2}}+{{a}^{2}}}=a\sqrt{3}$and$\left| \overrightarrow{AD} \right|=\sqrt{{{(-a)}^{2}}+{{a}^{2}}+{{a}^{2}}}=a\sqrt{3}$
So we know $\overrightarrow{OG}.\overrightarrow{AD}=\left( ai+aj+ak \right).\left( -ai+aj+ak \right)=-{{a}^{2}}\left( i.i \right)+{{a}^{2}}\left( j.j \right)+{{a}^{2}}\left( k.k \right)$
So we know that angle between two vectors $\overrightarrow{a}.\overrightarrow{b}$ is given by,
$\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\overrightarrow{\left| b \right|}} \right)$,
So applying above, so the angle between two diagonals $\overrightarrow{OG}$and$\overrightarrow{AD}$is as follows,
Consider the angle between two diagonals be $\theta $,
So we get the angle as,
$\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{OG}.\overrightarrow{AD}}{\left| \overrightarrow{OG} \right|\left| \overrightarrow{AD} \right|} \right)$
So substituting above values, we get,
$\theta ={{\cos }^{-1}}\left( \dfrac{{{a}^{2}}}{a\sqrt{3}\times a\sqrt{3}} \right)$
So we get,
$\theta ={{\cos }^{-1}}\left( \dfrac{1}{3} \right)$
So the correct answer is option(C).
Note: Be careful about the points$A({{x}_{1}},{{y}_{1}},{{z}_{1}})$and$B({{x}_{2}},{{y}_{2}},{{z}_{2}})$. Sometimes we get confused between the points. So take care of it. The angle between two vectors $\overrightarrow{a}.\overrightarrow{b}$ is $\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\overrightarrow{\left| b \right|}} \right)$. So you should be familiar with the formula. There are four diagonals $OG,CF,AD$ and $BE$. You can consider any one pair of diagonals.

So above we can see the Cube.
So the cube is a symmetrical three-dimensional shape, either solid or hollow, contained by six equal squares. The cube is the only regular hexahedron and is one of the five Platonic solids. It has $6$ faces, $12$ edges, and $8$ vertices.
The cube is also a square parallelepiped, an equilateral cuboid and a right rhombohedron. It is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations.
The cube is dual to the octahedron. It has cubical or octahedral symmetry.
The cube is the only convex polyhedron whose faces are all squares.
Cube has its length, breadth and height equal to each other.
Cube It has all its faces in a square shape. In a cube All the faces or sides have equal dimensions.
The plane angles of the cube are the right angle. Each of the faces meets the other four faces.
Each of the vertices meets the three faces and three edges. The edges opposite to each other are parallel.
Let $OABCDEFG$ be a cube with vertices as below,
$O(0,0,0), A(a,0,0), B(a,a,0), C(0,a,0,), D(0,a,a), E(0,0,a), F(a,0,a), G(a,a,a)$
There are four diagonals of the cube: they are $OG,CF,AD$ and $BE$ for the cube.
Let us consider any two say $OG$ and $AD$,
We know that if $A({{x}_{1}},{{y}_{1}},{{z}_{1}})$ and $B({{x}_{2}},{{y}_{2}},{{z}_{2}})$ are two points in space then,
\[\overrightarrow{AB}=({{x}_{2}}-{{x}_{1}})i+({{y}_{2}}-{{y}_{1}})j+({{z}_{2}}-{{z}_{1}})k\]
$\overrightarrow{OG}=(a-0)i+(a-0)j+(a-0)k=ai+aj+ak$
And $\overrightarrow{AD}=(0-a)i+(a-0)j+(a-0)k=-ai+aj+ak$,
So therefore we get the modulus of $\overrightarrow{OG}$ and $\overrightarrow{AD}$,
$\left| \overrightarrow{OG} \right|=\sqrt{{{a}^{2}}+{{a}^{2}}+{{a}^{2}}}=a\sqrt{3}$and$\left| \overrightarrow{AD} \right|=\sqrt{{{(-a)}^{2}}+{{a}^{2}}+{{a}^{2}}}=a\sqrt{3}$
So we know $\overrightarrow{OG}.\overrightarrow{AD}=\left( ai+aj+ak \right).\left( -ai+aj+ak \right)=-{{a}^{2}}\left( i.i \right)+{{a}^{2}}\left( j.j \right)+{{a}^{2}}\left( k.k \right)$
So we know that angle between two vectors $\overrightarrow{a}.\overrightarrow{b}$ is given by,
$\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\overrightarrow{\left| b \right|}} \right)$,
So applying above, so the angle between two diagonals $\overrightarrow{OG}$and$\overrightarrow{AD}$is as follows,
Consider the angle between two diagonals be $\theta $,
So we get the angle as,
$\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{OG}.\overrightarrow{AD}}{\left| \overrightarrow{OG} \right|\left| \overrightarrow{AD} \right|} \right)$
So substituting above values, we get,
$\theta ={{\cos }^{-1}}\left( \dfrac{{{a}^{2}}}{a\sqrt{3}\times a\sqrt{3}} \right)$
So we get,
$\theta ={{\cos }^{-1}}\left( \dfrac{1}{3} \right)$
So the correct answer is option(C).
Note: Be careful about the points$A({{x}_{1}},{{y}_{1}},{{z}_{1}})$and$B({{x}_{2}},{{y}_{2}},{{z}_{2}})$. Sometimes we get confused between the points. So take care of it. The angle between two vectors $\overrightarrow{a}.\overrightarrow{b}$ is $\theta ={{\cos }^{-1}}\left( \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\overrightarrow{\left| b \right|}} \right)$. So you should be familiar with the formula. There are four diagonals $OG,CF,AD$ and $BE$. You can consider any one pair of diagonals.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How many meters are there in a kilometer And how many class 8 maths CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a labelled sketch of the human eye class 12 physics CBSE
