The ${5^{th}}$ and ${8^{th}}$ terms of a GP are 1458 and 54, respectively. The common ratio of the GP is
$
{\text{A}}{\text{. }}\dfrac{1}{3} \\
{\text{B}}{\text{. 3}} \\
{\text{C}}{\text{. 9}} \\
{\text{D}}{\text{. }}\dfrac{1}{9} \\
{\text{E}}{\text{. }}\dfrac{1}{8} \\
$
Answer
Verified
503.1k+ views
Hint: In order to solve this question, First write what is given to us. It will give us a clear picture of what our approach should be to solve this question. Also then use the formula for ${n^{th}}$ term in GP. Thus we will get our required answer.
Complete step-by-step answer:
Now we have given that,
The ${5^{th}}$ and ${8^{th}}$ terms of a GP are 1458 and 54.
And we have to find the common ratio of GP.
Let us assume $a$ and $r$ be the first term and the common ratio of the GP respectively
Here given,the fifth term of the GP, ${T_5}=1458$
And the eight term of the GP, ${T_8} = 54$
Now, we know that ${n^{th}}$ term in the GP series, ${T_n} = a{r^{n - 1}}$
Where $a = $ first term of the GP series,
$r = $ common ratio of the GP series and
Or ${T_5} = a{r^4} = 1458$ and
${T_8} = a{r^7} = 54$
Now,
$\dfrac{{{T_8}}}{{{T_5}}} = \dfrac{{54}}{{1458}}$
Or $\dfrac{{a{r^7}}}{{a{r^4}}} = \dfrac{{54}}{{1458}}$
Or ${r^3} = \dfrac{1}{{27}}$
Or $r = \dfrac{1}{{\sqrt[3]{{27}}}}$
Or $r = \dfrac{1}{3}$
Thus the value of the common ratio of GP is $\dfrac{1}{3}$.
Note: Whenever we face such types of questions the key concept is that we should write what is given to us then find the easiest approach to find the solution of the question. Like in this question we simply write the formula of ${n^{th}}$ term in a GP, then divide them to get a ratio from where we get the value of $r$ . Thus we get our required answer.
Complete step-by-step answer:
Now we have given that,
The ${5^{th}}$ and ${8^{th}}$ terms of a GP are 1458 and 54.
And we have to find the common ratio of GP.
Let us assume $a$ and $r$ be the first term and the common ratio of the GP respectively
Here given,the fifth term of the GP, ${T_5}=1458$
And the eight term of the GP, ${T_8} = 54$
Now, we know that ${n^{th}}$ term in the GP series, ${T_n} = a{r^{n - 1}}$
Where $a = $ first term of the GP series,
$r = $ common ratio of the GP series and
Or ${T_5} = a{r^4} = 1458$ and
${T_8} = a{r^7} = 54$
Now,
$\dfrac{{{T_8}}}{{{T_5}}} = \dfrac{{54}}{{1458}}$
Or $\dfrac{{a{r^7}}}{{a{r^4}}} = \dfrac{{54}}{{1458}}$
Or ${r^3} = \dfrac{1}{{27}}$
Or $r = \dfrac{1}{{\sqrt[3]{{27}}}}$
Or $r = \dfrac{1}{3}$
Thus the value of the common ratio of GP is $\dfrac{1}{3}$.
Note: Whenever we face such types of questions the key concept is that we should write what is given to us then find the easiest approach to find the solution of the question. Like in this question we simply write the formula of ${n^{th}}$ term in a GP, then divide them to get a ratio from where we get the value of $r$ . Thus we get our required answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE