Answer
Verified
469.2k+ views
Hint: The ${n^{th}}$term of an A.P is ${a_n} = {a_1} + \left( {n - 1} \right)d$. First find the first term and common difference using the two equations, then substitute all values in the sum formula.
Given data
${4^{th}}$Term of an A.P is 22
$ \Rightarrow {a_4} = 22$
And ${15^{th}}$term is 66
$ \Rightarrow {a_{15}} = 66$
Now as we know that the ${n^{th}}$term of an A.P is ${a_n} = {a_1} + \left( {n - 1} \right)d$, where d is the common difference and ${a_1}$ is the first term of an A.P respectively.
$
\Rightarrow {a_4} = {a_1} + \left( {4 - 1} \right)d = {a_1} + 3d = 22 \\
\Rightarrow {a_1} = 22 - 3d.............\left( 1 \right) \\
$
${a_{15}} = {a_1} + \left( {15 - 1} \right)d = {a_1} + 14d = 66$
Now from equation (1) substitute the value of ${a_1}$in above equation we have
$
\Rightarrow 22 - 3d + 14d = 66 \\
\Rightarrow 11d = 66 - 22 = 44 \\
\Rightarrow d = \dfrac{{44}}{{11}} = 4 \\
$
Therefore from equation (1)
$ \Rightarrow {a_1} = 22 - 3\left( 4 \right) = 22 - 12 = 10$
Now as we know that the sum of an A.P is ${S_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right)$, where n is the number of terms.
Now we have to calculate the sum of 8 terms
Therefore $n = 8$
$ \Rightarrow {S_8} = \dfrac{8}{2}\left( {2{a_1} + \left( {8 - 1} \right)d} \right) = 4\left( {2{a_1} + 7d} \right)$
Now substitute the value of ${a_1},{\text{ }}d$in above equation we have
${S_8} = 4\left( {2 \times 10 + 7 \times 4} \right) = 4\left( {20 + 28} \right) = 4\left( {48} \right) = 192$
So, 192 is the required sum of 8 terms of an A.P
Note: In such types of questions the key concept we have to remember is that always recall the basic formulas of A.P which is stated above then according to given conditions and the formulas first calculate the value of first term and common difference of an A.P respectively, then from the formula of sum of an A.P calculate the value of sum of 8 terms and after simplification we will get the required answer.
Given data
${4^{th}}$Term of an A.P is 22
$ \Rightarrow {a_4} = 22$
And ${15^{th}}$term is 66
$ \Rightarrow {a_{15}} = 66$
Now as we know that the ${n^{th}}$term of an A.P is ${a_n} = {a_1} + \left( {n - 1} \right)d$, where d is the common difference and ${a_1}$ is the first term of an A.P respectively.
$
\Rightarrow {a_4} = {a_1} + \left( {4 - 1} \right)d = {a_1} + 3d = 22 \\
\Rightarrow {a_1} = 22 - 3d.............\left( 1 \right) \\
$
${a_{15}} = {a_1} + \left( {15 - 1} \right)d = {a_1} + 14d = 66$
Now from equation (1) substitute the value of ${a_1}$in above equation we have
$
\Rightarrow 22 - 3d + 14d = 66 \\
\Rightarrow 11d = 66 - 22 = 44 \\
\Rightarrow d = \dfrac{{44}}{{11}} = 4 \\
$
Therefore from equation (1)
$ \Rightarrow {a_1} = 22 - 3\left( 4 \right) = 22 - 12 = 10$
Now as we know that the sum of an A.P is ${S_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right)$, where n is the number of terms.
Now we have to calculate the sum of 8 terms
Therefore $n = 8$
$ \Rightarrow {S_8} = \dfrac{8}{2}\left( {2{a_1} + \left( {8 - 1} \right)d} \right) = 4\left( {2{a_1} + 7d} \right)$
Now substitute the value of ${a_1},{\text{ }}d$in above equation we have
${S_8} = 4\left( {2 \times 10 + 7 \times 4} \right) = 4\left( {20 + 28} \right) = 4\left( {48} \right) = 192$
So, 192 is the required sum of 8 terms of an A.P
Note: In such types of questions the key concept we have to remember is that always recall the basic formulas of A.P which is stated above then according to given conditions and the formulas first calculate the value of first term and common difference of an A.P respectively, then from the formula of sum of an A.P calculate the value of sum of 8 terms and after simplification we will get the required answer.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell