Answer

Verified

387.3k+ views

**Hint:**Now to solve this problem we will use an integral test for convergence. First we will check if the initial conditions are satisfied by the functions. Hence if the function is positive, continuous and decreasing in the interval $\left[ 1,\infty \right]$ we can proceed with the integral test. Hence we will find if the integral $\int_{1}^{\infty }{\dfrac{\ln x}{{{x}^{2}}}}$ converges. The nature of the series will be the same as the nature of the integral according to the Integral test.

**Complete step-by-step solution:**

Consider the given series $\sum{\dfrac{\ln k}{{{k}^{2}}}}$ .

To check the convergence of the series we will use Integral test.

Hence, the function $f\left( x \right)=\dfrac{\ln x}{{{x}^{2}}}$

Now first let us check if all the conditions of the Integral test theorem are satisfied.

To use the integral test the function must be positive continuous and decreasing in the interval $\left[ 1,\infty \right]$ where $f\left( n \right)={{a}_{n}}$ where ${{a}_{n}}$ is ${{n}^{th}}$ term of the sequence.

Now we know that $\ln x>0$ and ${{x}^{2}}>0$ for all value of x and hence the function is also positive for $x\in \left[ 1,\infty \right]$

Hence $f\left( x \right)>0$ for $x\in \left[ 1,\infty \right]$

Now let us check the difference in the given function.

$f\left( x \right)=\dfrac{\ln x}{{{x}^{2}}}$

Now we know that if $f\left( x \right)=\dfrac{p}{q}\Rightarrow f'\left( x \right)=\dfrac{qp'-pq'}{{{q}^{2}}}$

Hence differentiating the function $\dfrac{\ln x}{{{x}^{2}}}$ with the above formula we get, $\dfrac{{{x}^{2}}\dfrac{1}{x}-2x\left( \ln x \right)}{{{x}^{4}}}=\dfrac{\left( 1-2\ln x \right)}{{{x}^{3}}}$

Now we know that in the interval $\left[ 1,\infty \right]$ ${{x}^{3}}>0$ and $1-2\ln x<0$ as $\ln x>1$ for $x>1$

Hence we can say that the function $\dfrac{1-2\ln x}{{{x}^{3}}}<0$ in the interval $\left[ 1,\infty \right]$

Hence we have $f'\left( x \right)<0$ in the interval $\left[ 1,\infty \right]$

Now let us check $\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)$

$\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\ln x}{{{x}^{2}}}$

Using L-hospital rule we get that the limit is equal to $\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\dfrac{1}{x}}{2x}=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{2{{x}^{2}}}=0$

Hence function is monotone decreasing in the interval \[\left[ 1,\infty \right]\]

Now we can see the conditions for the integral test are satisfied.

Now we can say that if $\int_{1}^{\infty }{\dfrac{\ln x}{{{x}^{2}}}}$ converges then the series $\sum{\dfrac{\ln x}{{{x}^{2}}}}$ converges.

Now consider the integral $\int_{1}^{\infty }{\dfrac{\ln x}{{{x}^{2}}}}$

Now we know that $\int{f.g}=f\int{g}-\int{\left( f'\int{g} \right)}$ hence using this we get,

$\begin{align}

& \Rightarrow \int_{1}^{\infty }{\dfrac{\ln x}{{{x}^{2}}}}=\left[ \ln x\left( -\dfrac{1}{x} \right)-\int{\left( \dfrac{1}{x} \right)\left( \dfrac{-1}{x} \right)} \right]_{1}^{\infty } \\

& \Rightarrow \int_{1}^{\infty }{\dfrac{\ln x}{{{x}^{2}}}}=\left[ -\dfrac{\ln x}{x}+\int{\dfrac{1}{{{x}^{2}}}} \right]_{1}^{\infty } \\

& \Rightarrow \int_{1}^{\infty }{\dfrac{\ln x}{{{x}^{2}}}}=\left[ -\dfrac{\ln x}{x}-\dfrac{1}{x} \right]_{1}^{\infty } \\

& \Rightarrow \int_{1}^{\infty }{\dfrac{\ln x}{{{x}^{2}}}}=-\left[ \dfrac{\ln x+1}{x} \right]_{1}^{\infty } \\

& \Rightarrow \int_{1}^{\infty }{\dfrac{\ln x}{{{x}^{2}}}}=-\left[ \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\ln x+1}{x} \right)-\dfrac{\ln 1+1}{1} \right] \\

& \Rightarrow \int_{1}^{\infty }{\dfrac{\ln x}{{{x}^{2}}}}=-\left[ 0-\dfrac{0+1}{1} \right]=1 \\

\end{align}$

Hence we get the integral $\int_{1}^{\infty }{\dfrac{\ln x}{{{x}^{2}}}}$ converges.

**Hence by Integral test we have the series $\sum{\dfrac{\ln x}{{{x}^{2}}}}$ also converges.**

**Note:**Note that since the function obtained can be easily integrated we go for integral tests to check the convergence of the series instead of comparison tests. Also while using Integral test always check if the function satisfies all the initial conditions and then proceed with the test.

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Change the following sentences into negative and interrogative class 10 english CBSE