
STATEMENT-1: Charges experience force when they move at right angles to the magnetic field.
STATEMENT-2: A moving charge produces an electric field only.
(a) Statement-1 is true and Statement-2 is false
(b) Statement-1 is false and Statement-2 is true
(c) Statement-1 is true, Statement-2 is true, and Statement-2 is not the correct explanation of Statement-1.
(d) Statement-1 is true, Statement-2 is true, and Statement-2 is the correct explanation of Statement-1.
Answer
503.1k+ views
Hint: A magnetic field will be produced by both a moving charge which ultimately causes change within the electric field associated with it or a changing electric field. A charge moving in a magnetic field experiences a force mutually perpendicular to both velocity and therefore the direction of the magnetic field.
Complete step-by-step solution:
Statement 1: A charged particle enters at a right angle into a regular attractive field as appeared in the figure. We want to get the character of charge on the molecule within the event that it starts to move in a course pointing vertically out of the page thanks to its cooperation with the attractive field by Fleming’s left-hand rule.
At whatever point a current conveying conductor is put in a magnetic field, it encounters a force thanks to the magnetic field. We know that Fleming’s Left-Hand Rule, the first finger focuses on the direction of the magnetic field, the middle finger focuses on the direction of the current, and the thumb focuses on the direction of the force. So, we place our left hand like this with three fingers opposite each other. We locate that solitary positive charge experience force within a direction pointing vertically out of the page.
Statement 2: An electric property associated with each point within the space when the charge is present in any form is termed an electric field. Magnetic fields may be produced by moving electric charges and therefore the intrinsic magnetic moments of elementary practices related to a fundamental quantum property, their spin. Therefore, from both the definitions we can conclude that if there’s a charge there’ll be an electric field and when the charge is moving it’ll produce a magnetic field.
From the above discussion, Statement-1 is True, Statement-2 is true, and Statement-2 is not the correct explanation of Statement-1.
Hence, option (c) is correct.
Note: Students should confine in mind to prevent error in answering that a charge at rest cannot produce a magnetic field as there would be no change within the electric field associated with it. So, that the answer should mention it specifically as a moving charged particle and not only a charge particle. The magnetic field is a region where a charge, a current-carrying wire, or any magnetizing material can experience an influence due to magnetization.
Complete step-by-step solution:
Statement 1: A charged particle enters at a right angle into a regular attractive field as appeared in the figure. We want to get the character of charge on the molecule within the event that it starts to move in a course pointing vertically out of the page thanks to its cooperation with the attractive field by Fleming’s left-hand rule.
At whatever point a current conveying conductor is put in a magnetic field, it encounters a force thanks to the magnetic field. We know that Fleming’s Left-Hand Rule, the first finger focuses on the direction of the magnetic field, the middle finger focuses on the direction of the current, and the thumb focuses on the direction of the force. So, we place our left hand like this with three fingers opposite each other. We locate that solitary positive charge experience force within a direction pointing vertically out of the page.
Statement 2: An electric property associated with each point within the space when the charge is present in any form is termed an electric field. Magnetic fields may be produced by moving electric charges and therefore the intrinsic magnetic moments of elementary practices related to a fundamental quantum property, their spin. Therefore, from both the definitions we can conclude that if there’s a charge there’ll be an electric field and when the charge is moving it’ll produce a magnetic field.
From the above discussion, Statement-1 is True, Statement-2 is true, and Statement-2 is not the correct explanation of Statement-1.
Hence, option (c) is correct.
Note: Students should confine in mind to prevent error in answering that a charge at rest cannot produce a magnetic field as there would be no change within the electric field associated with it. So, that the answer should mention it specifically as a moving charged particle and not only a charge particle. The magnetic field is a region where a charge, a current-carrying wire, or any magnetizing material can experience an influence due to magnetization.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

