Answer
Verified
447.6k+ views
Hint: It is no surprise that equal chords and equal arcs both subtend equal angles at the centre of a fixed circle. The result for chords can be proven using congruent triangles, but congruent triangles cannot be used for arcs because they are not straight lines, so we need to identify the transformation involved.
Complete step-by-step answer:
Let’s try to figure our relation between length of chord & angle subtended and the center.
Given: \[\angle SOR{\text{ }} and \angle POQ\] are two equal angles subtended by chords SR and PQ of a circle at its centre O.
Here in the circle, the two chords are given
To Prove : RS = PQ
Proof : In \[\vartriangle SOR{\text{ }} and {\text{ }}\vartriangle POQ\],
OR = OP [Radii of a circle]
OS = OQ [Radii of a circle]
So OP = OS = OQ = OR (all are radii of the circle)
\[\angle SOR{\text{ }} and \angle POQ\] [Given]
Therefore, \[\vartriangle SOR \cong \vartriangle POQ\][By SAS]
Hence, RS = PQ [By cpctc, corresponding parts of congruent triangles are congruent. It means that once two triangles are proven to be congruent, then the three pairs of sides that correspond must be congruent and the three pairs of angles that correspond must be congruent.]
Thus, we conclude that if the angles made by the chords of a circle at the centre are equal, then the chords must be equal.
Note: The converse is also true.
The converse theorem : Equal chords of a circle subtend equal angles at the centre
For convenience, you can use the abbreviation CPCT in place of ‘Corresponding parts of congruent triangles’, and the abbreviation SAS will be used in place of ‘Side-Angle-Side’, because we use this very frequently for proving geometrical problems.
Complete step-by-step answer:
Let’s try to figure our relation between length of chord & angle subtended and the center.
Given: \[\angle SOR{\text{ }} and \angle POQ\] are two equal angles subtended by chords SR and PQ of a circle at its centre O.
Here in the circle, the two chords are given
To Prove : RS = PQ
Proof : In \[\vartriangle SOR{\text{ }} and {\text{ }}\vartriangle POQ\],
OR = OP [Radii of a circle]
OS = OQ [Radii of a circle]
So OP = OS = OQ = OR (all are radii of the circle)
\[\angle SOR{\text{ }} and \angle POQ\] [Given]
Therefore, \[\vartriangle SOR \cong \vartriangle POQ\][By SAS]
Hence, RS = PQ [By cpctc, corresponding parts of congruent triangles are congruent. It means that once two triangles are proven to be congruent, then the three pairs of sides that correspond must be congruent and the three pairs of angles that correspond must be congruent.]
Thus, we conclude that if the angles made by the chords of a circle at the centre are equal, then the chords must be equal.
Note: The converse is also true.
The converse theorem : Equal chords of a circle subtend equal angles at the centre
For convenience, you can use the abbreviation CPCT in place of ‘Corresponding parts of congruent triangles’, and the abbreviation SAS will be used in place of ‘Side-Angle-Side’, because we use this very frequently for proving geometrical problems.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE