
State and prove addition theorem on probability.
Answer
605.1k+ views
Hint- Since this is probability, so there is occurrence of events, say 2 events and this theorem involves addition of them.
Addition theorem of probability$ - $ If $A$ and $B$ are any two events then the probability of happening of at least one of the events is defined as,
$P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)$
Proof:-
From set theory, we know that,
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$
Dividing the above equation \[n(s)\]both sides we have
$\begin{array}{*{20}{l}}
{\dfrac{{n\left( {A \cup B} \right)}}{{n\left( S \right)}} = \dfrac{{n\left( A \right)}}{{n\left( S \right)}} + \dfrac{{n\left( B \right)}}{{n\left( S \right)}} - \dfrac{{n\left( {A \cap B} \right)}}{{n\left( S \right)}}} \\
{P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)} \\
{\left( {\;\because \;P\left( X \right) = \dfrac{{n\left( X \right)}}{{n\left( S \right)}}} \right)}
\end{array}$
Hence proved.
NOTE: If two events $A$ and $B$ are mutually exclusive, then
\[A \cap B = \phi \](null set)
\[A \cap B = 0\]
Addition theorem of probability$ - $ If $A$ and $B$ are any two events then the probability of happening of at least one of the events is defined as,
$P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)$
Proof:-
From set theory, we know that,
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$
Dividing the above equation \[n(s)\]both sides we have
$\begin{array}{*{20}{l}}
{\dfrac{{n\left( {A \cup B} \right)}}{{n\left( S \right)}} = \dfrac{{n\left( A \right)}}{{n\left( S \right)}} + \dfrac{{n\left( B \right)}}{{n\left( S \right)}} - \dfrac{{n\left( {A \cap B} \right)}}{{n\left( S \right)}}} \\
{P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)} \\
{\left( {\;\because \;P\left( X \right) = \dfrac{{n\left( X \right)}}{{n\left( S \right)}}} \right)}
\end{array}$
Hence proved.
NOTE: If two events $A$ and $B$ are mutually exclusive, then
\[A \cap B = \phi \](null set)
\[A \cap B = 0\]
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

