Answer
Verified
469.8k+ views
Hint: Use the quotient rule of differentiation in the given question to get the desired result.
Here, starting with \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\], we have to prove that \[\dfrac{{{d}^{2}}y}{d{{y}^{2}}}=-\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{3}}}\].
Also, we have to prove \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}}\]for parabola \[{{y}^{2}}=4ax\].
Taking, \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\]
Now, we will differentiate both sides with respect to \[y\].
Also, we know that quotient rule says that,
\[\dfrac{d}{dy}\left( \dfrac{f}{g} \right)=\dfrac{g\left( \dfrac{dt}{dy} \right)-f\left( \dfrac{dg}{dy} \right)}{{{g}^{2}}}\]
In \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\]
\[f=1\]and \[g=\dfrac{dy}{dx}\]
Now, differentiating both sides with respect to \[y\].
We get, \[\dfrac{d}{dy}\left( \dfrac{dx}{dy} \right)=\dfrac{\left( \dfrac{dy}{dx} \right)\dfrac{d}{dy}\left( 1 \right)-\left( 1 \right)\left[ \dfrac{d}{dy}\left( \dfrac{dy}{dx} \right) \right]}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
As we know that \[\dfrac{d}{dy}\left( \text{constant} \right)=0\]
Therefore, we get
\[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{0-\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
Now we will multiply by \[\dfrac{dy}{dx}\] on both the numerator and denominator of \[RHS\].
We get \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right).\dfrac{dy}{dx}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}.\dfrac{dy}{dx}}\]
We know that \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right).\dfrac{dy}{dx}=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]
Therefore, we get \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\][Hence Proved]
which is our required result.
Now, we have to prove that \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}}\] for parabola \[{{y}^{2}}=4ax\].
Now we take parabola, \[{{y}^{2}}=4ax\].
So, we differentiate the above equation with respect to \[x\].
Also, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
Therefore, \[2y\dfrac{dy}{dx}=4a\]
\[\dfrac{dy}{dx}=\dfrac{2a}{y}....\left( i \right)\]
Again differentiating both sides with respect to \[x\],
We get, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( 2a \right){{y}^{-1-1}}.\dfrac{dy}{dx}\]
Now, we put the value of \[\dfrac{dy}{dx}\]from equation \[\left( i \right)\].
We get \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2a}{{{y}^{2}}}.\dfrac{2a}{y}\]
Therefore, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-4{{a}^{2}}}{{{y}^{3}}}....\left( ii \right)\]
Now, from previous results, we know that
\[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{\dfrac{-{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
By putting values from equation \[\left( i \right)\]and \[\left( ii \right)\]
We get, \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\left[ \dfrac{-4{{a}^{2}}}{{{y}^{3}}} \right]}{{{\left[ \dfrac{2a}{y} \right]}^{3}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{\dfrac{+4{{a}^{2}}}{{{y}^{3}}}}{\dfrac{8{{a}^{3}}}{{{y}^{3}}}}\]
By cancelling the like terms,
We get, \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{+1}{2a}....\left( iii \right)\]
Now we will multiply the equation \[\left( ii \right)\]and \[\left( iii \right)\].
We get, \[\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}} \right)=\left( \dfrac{-4{{a}^{2}}}{{{y}^{3}}} \right).\dfrac{1}{2a}\]
By cancelling the like terms,
We get, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-2a}{{{y}^{3}}}\]which is the required result.
Note: In the term \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)\], some students cancel \[dy\] from numerator and denominator considering them to be like terms but that is wrong and \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)=\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{\dfrac{dy}{dx}}\].
Here, starting with \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\], we have to prove that \[\dfrac{{{d}^{2}}y}{d{{y}^{2}}}=-\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{3}}}\].
Also, we have to prove \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}}\]for parabola \[{{y}^{2}}=4ax\].
Taking, \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\]
Now, we will differentiate both sides with respect to \[y\].
Also, we know that quotient rule says that,
\[\dfrac{d}{dy}\left( \dfrac{f}{g} \right)=\dfrac{g\left( \dfrac{dt}{dy} \right)-f\left( \dfrac{dg}{dy} \right)}{{{g}^{2}}}\]
In \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\]
\[f=1\]and \[g=\dfrac{dy}{dx}\]
Now, differentiating both sides with respect to \[y\].
We get, \[\dfrac{d}{dy}\left( \dfrac{dx}{dy} \right)=\dfrac{\left( \dfrac{dy}{dx} \right)\dfrac{d}{dy}\left( 1 \right)-\left( 1 \right)\left[ \dfrac{d}{dy}\left( \dfrac{dy}{dx} \right) \right]}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
As we know that \[\dfrac{d}{dy}\left( \text{constant} \right)=0\]
Therefore, we get
\[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{0-\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
Now we will multiply by \[\dfrac{dy}{dx}\] on both the numerator and denominator of \[RHS\].
We get \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right).\dfrac{dy}{dx}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}.\dfrac{dy}{dx}}\]
We know that \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right).\dfrac{dy}{dx}=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]
Therefore, we get \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\][Hence Proved]
which is our required result.
Now, we have to prove that \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}}\] for parabola \[{{y}^{2}}=4ax\].
Now we take parabola, \[{{y}^{2}}=4ax\].
So, we differentiate the above equation with respect to \[x\].
Also, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
Therefore, \[2y\dfrac{dy}{dx}=4a\]
\[\dfrac{dy}{dx}=\dfrac{2a}{y}....\left( i \right)\]
Again differentiating both sides with respect to \[x\],
We get, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( 2a \right){{y}^{-1-1}}.\dfrac{dy}{dx}\]
Now, we put the value of \[\dfrac{dy}{dx}\]from equation \[\left( i \right)\].
We get \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2a}{{{y}^{2}}}.\dfrac{2a}{y}\]
Therefore, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-4{{a}^{2}}}{{{y}^{3}}}....\left( ii \right)\]
Now, from previous results, we know that
\[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{\dfrac{-{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
By putting values from equation \[\left( i \right)\]and \[\left( ii \right)\]
We get, \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\left[ \dfrac{-4{{a}^{2}}}{{{y}^{3}}} \right]}{{{\left[ \dfrac{2a}{y} \right]}^{3}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{\dfrac{+4{{a}^{2}}}{{{y}^{3}}}}{\dfrac{8{{a}^{3}}}{{{y}^{3}}}}\]
By cancelling the like terms,
We get, \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{+1}{2a}....\left( iii \right)\]
Now we will multiply the equation \[\left( ii \right)\]and \[\left( iii \right)\].
We get, \[\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}} \right)=\left( \dfrac{-4{{a}^{2}}}{{{y}^{3}}} \right).\dfrac{1}{2a}\]
By cancelling the like terms,
We get, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-2a}{{{y}^{3}}}\]which is the required result.
Note: In the term \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)\], some students cancel \[dy\] from numerator and denominator considering them to be like terms but that is wrong and \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)=\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{\dfrac{dy}{dx}}\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Write a letter to the principal requesting him to grant class 10 english CBSE
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE