Starting with \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\]. Prove that \[\dfrac{{{d}^{2}}y}{d{{y}^{2}}}=-\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{3}}}\] and deduce that for the parabola \[{{y}^{2}}=4ax\], \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}}\].
.
Last updated date: 27th Mar 2023
•
Total views: 309.3k
•
Views today: 3.86k
Answer
309.3k+ views
Hint: Use the quotient rule of differentiation in the given question to get the desired result.
Here, starting with \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\], we have to prove that \[\dfrac{{{d}^{2}}y}{d{{y}^{2}}}=-\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{3}}}\].
Also, we have to prove \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}}\]for parabola \[{{y}^{2}}=4ax\].
Taking, \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\]
Now, we will differentiate both sides with respect to \[y\].
Also, we know that quotient rule says that,
\[\dfrac{d}{dy}\left( \dfrac{f}{g} \right)=\dfrac{g\left( \dfrac{dt}{dy} \right)-f\left( \dfrac{dg}{dy} \right)}{{{g}^{2}}}\]
In \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\]
\[f=1\]and \[g=\dfrac{dy}{dx}\]
Now, differentiating both sides with respect to \[y\].
We get, \[\dfrac{d}{dy}\left( \dfrac{dx}{dy} \right)=\dfrac{\left( \dfrac{dy}{dx} \right)\dfrac{d}{dy}\left( 1 \right)-\left( 1 \right)\left[ \dfrac{d}{dy}\left( \dfrac{dy}{dx} \right) \right]}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
As we know that \[\dfrac{d}{dy}\left( \text{constant} \right)=0\]
Therefore, we get
\[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{0-\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
Now we will multiply by \[\dfrac{dy}{dx}\] on both the numerator and denominator of \[RHS\].
We get \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right).\dfrac{dy}{dx}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}.\dfrac{dy}{dx}}\]
We know that \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right).\dfrac{dy}{dx}=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]
Therefore, we get \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\][Hence Proved]
which is our required result.
Now, we have to prove that \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}}\] for parabola \[{{y}^{2}}=4ax\].
Now we take parabola, \[{{y}^{2}}=4ax\].
So, we differentiate the above equation with respect to \[x\].
Also, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
Therefore, \[2y\dfrac{dy}{dx}=4a\]
\[\dfrac{dy}{dx}=\dfrac{2a}{y}....\left( i \right)\]
Again differentiating both sides with respect to \[x\],
We get, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( 2a \right){{y}^{-1-1}}.\dfrac{dy}{dx}\]
Now, we put the value of \[\dfrac{dy}{dx}\]from equation \[\left( i \right)\].
We get \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2a}{{{y}^{2}}}.\dfrac{2a}{y}\]
Therefore, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-4{{a}^{2}}}{{{y}^{3}}}....\left( ii \right)\]
Now, from previous results, we know that
\[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{\dfrac{-{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
By putting values from equation \[\left( i \right)\]and \[\left( ii \right)\]
We get, \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\left[ \dfrac{-4{{a}^{2}}}{{{y}^{3}}} \right]}{{{\left[ \dfrac{2a}{y} \right]}^{3}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{\dfrac{+4{{a}^{2}}}{{{y}^{3}}}}{\dfrac{8{{a}^{3}}}{{{y}^{3}}}}\]
By cancelling the like terms,
We get, \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{+1}{2a}....\left( iii \right)\]
Now we will multiply the equation \[\left( ii \right)\]and \[\left( iii \right)\].
We get, \[\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}} \right)=\left( \dfrac{-4{{a}^{2}}}{{{y}^{3}}} \right).\dfrac{1}{2a}\]
By cancelling the like terms,
We get, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-2a}{{{y}^{3}}}\]which is the required result.
Note: In the term \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)\], some students cancel \[dy\] from numerator and denominator considering them to be like terms but that is wrong and \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)=\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{\dfrac{dy}{dx}}\].
Here, starting with \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\], we have to prove that \[\dfrac{{{d}^{2}}y}{d{{y}^{2}}}=-\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{3}}}\].
Also, we have to prove \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}}\]for parabola \[{{y}^{2}}=4ax\].
Taking, \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\]
Now, we will differentiate both sides with respect to \[y\].
Also, we know that quotient rule says that,
\[\dfrac{d}{dy}\left( \dfrac{f}{g} \right)=\dfrac{g\left( \dfrac{dt}{dy} \right)-f\left( \dfrac{dg}{dy} \right)}{{{g}^{2}}}\]
In \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\]
\[f=1\]and \[g=\dfrac{dy}{dx}\]
Now, differentiating both sides with respect to \[y\].
We get, \[\dfrac{d}{dy}\left( \dfrac{dx}{dy} \right)=\dfrac{\left( \dfrac{dy}{dx} \right)\dfrac{d}{dy}\left( 1 \right)-\left( 1 \right)\left[ \dfrac{d}{dy}\left( \dfrac{dy}{dx} \right) \right]}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
As we know that \[\dfrac{d}{dy}\left( \text{constant} \right)=0\]
Therefore, we get
\[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{0-\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
Now we will multiply by \[\dfrac{dy}{dx}\] on both the numerator and denominator of \[RHS\].
We get \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right).\dfrac{dy}{dx}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}.\dfrac{dy}{dx}}\]
We know that \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right).\dfrac{dy}{dx}=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]
Therefore, we get \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\][Hence Proved]
which is our required result.
Now, we have to prove that \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}}\] for parabola \[{{y}^{2}}=4ax\].
Now we take parabola, \[{{y}^{2}}=4ax\].
So, we differentiate the above equation with respect to \[x\].
Also, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
Therefore, \[2y\dfrac{dy}{dx}=4a\]
\[\dfrac{dy}{dx}=\dfrac{2a}{y}....\left( i \right)\]
Again differentiating both sides with respect to \[x\],
We get, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( 2a \right){{y}^{-1-1}}.\dfrac{dy}{dx}\]
Now, we put the value of \[\dfrac{dy}{dx}\]from equation \[\left( i \right)\].
We get \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2a}{{{y}^{2}}}.\dfrac{2a}{y}\]
Therefore, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-4{{a}^{2}}}{{{y}^{3}}}....\left( ii \right)\]
Now, from previous results, we know that
\[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{\dfrac{-{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}\]
By putting values from equation \[\left( i \right)\]and \[\left( ii \right)\]
We get, \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\left[ \dfrac{-4{{a}^{2}}}{{{y}^{3}}} \right]}{{{\left[ \dfrac{2a}{y} \right]}^{3}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{\dfrac{+4{{a}^{2}}}{{{y}^{3}}}}{\dfrac{8{{a}^{3}}}{{{y}^{3}}}}\]
By cancelling the like terms,
We get, \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{+1}{2a}....\left( iii \right)\]
Now we will multiply the equation \[\left( ii \right)\]and \[\left( iii \right)\].
We get, \[\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}} \right)=\left( \dfrac{-4{{a}^{2}}}{{{y}^{3}}} \right).\dfrac{1}{2a}\]
By cancelling the like terms,
We get, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-2a}{{{y}^{3}}}\]which is the required result.
Note: In the term \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)\], some students cancel \[dy\] from numerator and denominator considering them to be like terms but that is wrong and \[\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)=\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{\dfrac{dy}{dx}}\].
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
