Solve this$\int {{x^x}\log \left( {ex} \right)dx} $?
$
{\text{A}}{\text{. }}{x^2} + c \\
{\text{B}}{\text{. }}x \cdot \operatorname{logx} + c \\
{\text{C}}{\text{.}}{\left( {\log x} \right)^x} + c \\
{\text{D}}{\text{. }}{x^{\log x}} + c \\
$
Answer
326.7k+ views
Hint-To solve this question we need to understand how to solve the integrals by the method of substitution and also the properties of logarithm. Then we need to find the correct answer among given examples.
Complete step-by-step answer:
According to Question take ${\text{I = }}\int {{{\text{x}}^x}{\text{ log}}\left( {{\text{ex}}} \right)dx} $
Now using the product rule of log
${\text{I = }}\int {{{\text{x}}^{\text{x}}}\left( {{\text{log e + log x}}} \right)dx} $
Put the value$\log {\text{e = 1}}$in above equation
${\text{I = }}\int {{{\text{x}}^{\text{x}}}\left( {1 + {\text{log x}}} \right)dx} $ …. (1)
Let ${\text{p = }}{{\text{x}}^x}$ …. (2)
Now, take log on both sides
${\text{log p = x log x}}$
Now differentiate this equation with respect to x
$
\dfrac{1}{{\text{p}}}\dfrac{{dp}}{{dx}} = {\text{log x + }}\dfrac{{\text{x}}}{{\text{x}}} \\
\dfrac{{dp}}{{dx}} = {\text{p}}\left( {1 + {\text{ log x}}} \right) \\
dp = {\text{p}}\left( {1 + {\text{log x}}} \right)dx \\
$
Now from equation (2), we get
$dp = {{\text{x}}^{\text{x}}}\left( {{\text{1 + log x}}} \right)dx$
Equating this equation with equation (1)
$
{\text{I = }}\int {dp} \\
{\text{I = p + c}} \\
$
From equation (2)
${\text{I = }}{{\text{x}}^{{\text{x }}}}{\text{ + c}}$ , where c is a constant.
Note-In these types of questions we need to apply the product rule of log and solve the question by analysing the options and solving Integration by Substitution.
Product rule of log is ${\log _a}\left( {{\text{xy}}} \right) = {\log _a}{\text{x + lo}}{{\text{g}}_a}{\text{y}}$
Integration by Substitution is a method to solve integrals by setting them up in a special specific way. It is also called ‘u-Substitution’ or ‘The Reverse Chain Rule’.
Complete step-by-step answer:
According to Question take ${\text{I = }}\int {{{\text{x}}^x}{\text{ log}}\left( {{\text{ex}}} \right)dx} $
Now using the product rule of log
${\text{I = }}\int {{{\text{x}}^{\text{x}}}\left( {{\text{log e + log x}}} \right)dx} $
Put the value$\log {\text{e = 1}}$in above equation
${\text{I = }}\int {{{\text{x}}^{\text{x}}}\left( {1 + {\text{log x}}} \right)dx} $ …. (1)
Let ${\text{p = }}{{\text{x}}^x}$ …. (2)
Now, take log on both sides
${\text{log p = x log x}}$
Now differentiate this equation with respect to x
$
\dfrac{1}{{\text{p}}}\dfrac{{dp}}{{dx}} = {\text{log x + }}\dfrac{{\text{x}}}{{\text{x}}} \\
\dfrac{{dp}}{{dx}} = {\text{p}}\left( {1 + {\text{ log x}}} \right) \\
dp = {\text{p}}\left( {1 + {\text{log x}}} \right)dx \\
$
Now from equation (2), we get
$dp = {{\text{x}}^{\text{x}}}\left( {{\text{1 + log x}}} \right)dx$
Equating this equation with equation (1)
$
{\text{I = }}\int {dp} \\
{\text{I = p + c}} \\
$
From equation (2)
${\text{I = }}{{\text{x}}^{{\text{x }}}}{\text{ + c}}$ , where c is a constant.
Note-In these types of questions we need to apply the product rule of log and solve the question by analysing the options and solving Integration by Substitution.
Product rule of log is ${\log _a}\left( {{\text{xy}}} \right) = {\log _a}{\text{x + lo}}{{\text{g}}_a}{\text{y}}$
Integration by Substitution is a method to solve integrals by setting them up in a special specific way. It is also called ‘u-Substitution’ or ‘The Reverse Chain Rule’.
Last updated date: 05th Jun 2023
•
Total views: 326.7k
•
Views today: 6.83k
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
