
How do you solve the system of equations $3x - 2y = 7$ and $x + 3y = - 5$?
Answer
546.6k+ views
Hint: Where we are given a pair of linear equations and we have to find the value of x and y by using the given equation. We can solve the equation by the method of elimination or by using the method of substitution for the method of substitution. First we will find the value of one variable in the form of another for example we will find the value of x in terms of y then substitute that value in another equation. Then we will solve the equation and find the value of that variable. After that substitute the value of that variable in another equation and find the value of the remaining one variable.
Complete step-by-step answer:
Step1: We are given a pair of linear equations $3x - 2y = 7$ and $x + 3y = - 5$ by applying the method of substitution we will find the value of both variables. We will solve the second equation for $x$:
$ \Rightarrow x + 3y = - 5$
Subtracting $3y$ from both sides:
$ \Rightarrow x + 3y - 3y = - 5 - 3y$
On proper rearrangement we will get:
$ \Rightarrow x = - 5 - 3y$
Step2: Now we will substitute the value of x in the first equation and solve for $y$:
$ \Rightarrow 3( - 5 - 3y) - 2y = 7$
$ \Rightarrow - 15 - 9y - 2y = 7$
Adding $15$ both the sides we will get:
$ \Rightarrow 15 - 15 - 11y = 15 + 7$
$ \Rightarrow 0 - 11y = 22$
Dividing both sides by$ - 11$:
$ \Rightarrow \dfrac{{ - 11y}}{{ - 11}} = \dfrac{{22}}{{ - 11}}$
$ \Rightarrow y = - 2$
Step3: Substitute $ - 2$ for y in the solution to the second equation at the end of step1 and calculate $x$:
$ \Rightarrow x = - 5 - \left( {3 \times - 2} \right)$
On further solving we will get:
$ \Rightarrow x = - 5 + 6$
$x = 1$
So the solution is $x = 1;y = - 2$
Hence the solution is $x = 1;y = - 2$
Note:
This type of question we can solve by two methods: first is substitution and the second one is elimination. In this method the main thing is to find the value of one variable in terms of other students mainly doing the mistakes here.
Alternate method:
We are given two equations i.e.
$3x - 2y = 7$…(1)
$x + 3y = - 5$….(2)
Multiply (2) equation by $3$
$3x + 9y = - 15$…(3)
Subtract equation (3) from (1)
$ 3x+ 9y = - 15 $
$ \underline {( - ){{3x}} - 2y = 7} $
$ 11y = - 22 $
Now dividing the both sides by $11$
$y = - 2$
Substitute $y = - 2$ in equation (1) we get the value of x
$ \Rightarrow 3x + 4 = 7$
$ \Rightarrow 3x = 3$
$ \Rightarrow x = 1$
Here also we will get the same solution i.e. $x = 1;y = - 2$
Complete step-by-step answer:
Step1: We are given a pair of linear equations $3x - 2y = 7$ and $x + 3y = - 5$ by applying the method of substitution we will find the value of both variables. We will solve the second equation for $x$:
$ \Rightarrow x + 3y = - 5$
Subtracting $3y$ from both sides:
$ \Rightarrow x + 3y - 3y = - 5 - 3y$
On proper rearrangement we will get:
$ \Rightarrow x = - 5 - 3y$
Step2: Now we will substitute the value of x in the first equation and solve for $y$:
$ \Rightarrow 3( - 5 - 3y) - 2y = 7$
$ \Rightarrow - 15 - 9y - 2y = 7$
Adding $15$ both the sides we will get:
$ \Rightarrow 15 - 15 - 11y = 15 + 7$
$ \Rightarrow 0 - 11y = 22$
Dividing both sides by$ - 11$:
$ \Rightarrow \dfrac{{ - 11y}}{{ - 11}} = \dfrac{{22}}{{ - 11}}$
$ \Rightarrow y = - 2$
Step3: Substitute $ - 2$ for y in the solution to the second equation at the end of step1 and calculate $x$:
$ \Rightarrow x = - 5 - \left( {3 \times - 2} \right)$
On further solving we will get:
$ \Rightarrow x = - 5 + 6$
$x = 1$
So the solution is $x = 1;y = - 2$
Hence the solution is $x = 1;y = - 2$
Note:
This type of question we can solve by two methods: first is substitution and the second one is elimination. In this method the main thing is to find the value of one variable in terms of other students mainly doing the mistakes here.
Alternate method:
We are given two equations i.e.
$3x - 2y = 7$…(1)
$x + 3y = - 5$….(2)
Multiply (2) equation by $3$
$3x + 9y = - 15$…(3)
Subtract equation (3) from (1)
$ 3x+ 9y = - 15 $
$ \underline {( - ){{3x}} - 2y = 7} $
$ 11y = - 22 $
Now dividing the both sides by $11$
$y = - 2$
Substitute $y = - 2$ in equation (1) we get the value of x
$ \Rightarrow 3x + 4 = 7$
$ \Rightarrow 3x = 3$
$ \Rightarrow x = 1$
Here also we will get the same solution i.e. $x = 1;y = - 2$
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

