
Solve the following trigonometric equation and find the value
${\left( {\dfrac{{\sin {{47}^ \circ }}}{{\cos {{43}^ \circ }}}} \right)^2} + {\left( {\dfrac{{\cos
{{43}^ \circ }}}{{\sin {{47}^ \circ }}}} \right)^2} - 4{\cos ^2}{45^ \circ }$
Answer
595.2k+ views
Hint: - Try to break the angle as a sum of other angles with multiple of\[{90^ \circ
},{180^ \circ },{270^ \circ }\& {360^ \circ }\].
We have to find the value of${\left( {\dfrac{{\sin {{47}^ \circ }}}{{\cos {{43}^ \circ }}}}
\right)^2} + {\left( {\dfrac{{\cos {{43}^ \circ }}}{{\sin {{47}^ \circ }}}} \right)^2} - 4{\cos ^2}{45^
\circ }$
As we know that
$\left[ {\sin \left( {{{90}^ \circ } - \theta } \right) = \cos \theta ,\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \& \cos {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right]$
So proceeding in the same way
$
\Rightarrow {\left( {\dfrac{{\sin \left( {{{90}^ \circ } - {{43}^ \circ }} \right)}}{{\cos {{43}^
\circ }}}} \right)^2} + {\left( {\dfrac{{\cos \left( {{{90}^ \circ } - {{47}^ \circ }} \right)}}{{\sin
{{47}^ \circ }}}} \right)^2} - 4{\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} \\
\Rightarrow 1 + 1 - 4\left( {\dfrac{1}{2}} \right) \\
\Rightarrow 2 - 2 \\
\Rightarrow 0 \\
$
Hence, the final value of the term is 0.
Note: - In case of some random degree angle in trigonometric don’t try to find out the value
of that term rather try to solve the problem by manipulation in degree by using different
trigonometric identities. One of them used has been mentioned above.
},{180^ \circ },{270^ \circ }\& {360^ \circ }\].
We have to find the value of${\left( {\dfrac{{\sin {{47}^ \circ }}}{{\cos {{43}^ \circ }}}}
\right)^2} + {\left( {\dfrac{{\cos {{43}^ \circ }}}{{\sin {{47}^ \circ }}}} \right)^2} - 4{\cos ^2}{45^
\circ }$
As we know that
$\left[ {\sin \left( {{{90}^ \circ } - \theta } \right) = \cos \theta ,\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \& \cos {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right]$
So proceeding in the same way
$
\Rightarrow {\left( {\dfrac{{\sin \left( {{{90}^ \circ } - {{43}^ \circ }} \right)}}{{\cos {{43}^
\circ }}}} \right)^2} + {\left( {\dfrac{{\cos \left( {{{90}^ \circ } - {{47}^ \circ }} \right)}}{{\sin
{{47}^ \circ }}}} \right)^2} - 4{\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} \\
\Rightarrow 1 + 1 - 4\left( {\dfrac{1}{2}} \right) \\
\Rightarrow 2 - 2 \\
\Rightarrow 0 \\
$
Hence, the final value of the term is 0.
Note: - In case of some random degree angle in trigonometric don’t try to find out the value
of that term rather try to solve the problem by manipulation in degree by using different
trigonometric identities. One of them used has been mentioned above.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

