Answer
Verified
456.9k+ views
Hint: To solve this question firstly we will write the system of linear equations in determinant form. Then, we will find the determinants${{D}_{1}}$, ${{D}_{2}}$ and${{D}_{3}}$. And then using formula $x=\dfrac{D}{{{D}_{1}}}$ , $y=\dfrac{D}{{{D}_{2}}}$ and $z=\dfrac{D}{{{D}_{3}}}$, we will evaluate the variables x, y and z.
Complete step by step answer:
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Also, we know that if we have linear equation as, px + qy + rz = u, lx + my + nz = v and ax + by + cz = w, then we can represent coefficients of system of linear equation in determinant as $D=\left| \begin{matrix}
p & q & r \\
l & m & n \\
a & b & c \\
\end{matrix} \right|$
Then in Cramer’s rule, we find three more determinants as ${{D}_{1}}=\left| \begin{matrix}
u & q & r \\
v & m & n \\
w & b & c \\
\end{matrix} \right|$, \[{{D}_{2}}=\left| \begin{matrix}
p & u & r \\
l & v & n \\
a & w & c \\
\end{matrix} \right|\] and \[{{D}_{3}}=\left| \begin{matrix}
p & q & u \\
l & m & v \\
a & b & w \\
\end{matrix} \right|\] and we evaluate $x=\dfrac{D}{{{D}_{1}}}$ , $y=\dfrac{D}{{{D}_{2}}}$ and $z=\dfrac{D}{{{D}_{3}}}$.
Now, we can re – write the system of linear equations as,
x + y + 0.z = 0,
0.x + y + z = 1,
x + 0.y + z = 3 and in determinant form as
$D=\left| \begin{matrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
\end{matrix} \right|$
Expanding determinant along ${{R}_{1}}$, we get
$D=1(1)-1(-1)+0$
$\Rightarrow $ D = 2
Now, ${{D}_{1}}=\left| \begin{matrix}
0 & 1 & 0 \\
1 & 1 & 1 \\
3 & 0 & 1 \\
\end{matrix} \right|$
Expanding determinant along ${{R}_{1}}$, we get
${{D}_{1}}=0-1(1-3)+0$
$\Rightarrow {{D}_{1}}=2$
Now, \[{{D}_{2}}=\left| \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 3 & 1 \\
\end{matrix} \right|\]
Expanding determinant along ${{R}_{1}}$, we get
${{D}_{2}}=1(1-3)-0+0$
$\Rightarrow {{D}_{2}}=-2$
Now, \[{{D}_{3}}=\left| \begin{matrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 3 \\
\end{matrix} \right|\]
Expanding determinant along ${{R}_{1}}$, we get
\[{{D}_{3}}=1(3-1)-1+0\]
$\Rightarrow {{D}_{3}}=1$
So, we know that according to Cramer’s rule
$x=\dfrac{D}{{{D}_{1}}}$ , $y=\dfrac{D}{{{D}_{2}}}$ and $z=\dfrac{D}{{{D}_{3}}}$.
So, $x=\dfrac{2}{2}$,$y=\dfrac{2}{-2}$ and $z=\dfrac{2}{1}$
We get, x = 1, y = -1 and z = 2.
Note: To solve this question, one must know how we expand the determinants and also one must know the concept of Cramer’s rule. Also, this rule works for any number of variable linear equations. While solving determinant and evaluating the values of variable x, y and z try not to make any calculation mistakes as this may give you wrong values of variables.
Complete step by step answer:
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Also, we know that if we have linear equation as, px + qy + rz = u, lx + my + nz = v and ax + by + cz = w, then we can represent coefficients of system of linear equation in determinant as $D=\left| \begin{matrix}
p & q & r \\
l & m & n \\
a & b & c \\
\end{matrix} \right|$
Then in Cramer’s rule, we find three more determinants as ${{D}_{1}}=\left| \begin{matrix}
u & q & r \\
v & m & n \\
w & b & c \\
\end{matrix} \right|$, \[{{D}_{2}}=\left| \begin{matrix}
p & u & r \\
l & v & n \\
a & w & c \\
\end{matrix} \right|\] and \[{{D}_{3}}=\left| \begin{matrix}
p & q & u \\
l & m & v \\
a & b & w \\
\end{matrix} \right|\] and we evaluate $x=\dfrac{D}{{{D}_{1}}}$ , $y=\dfrac{D}{{{D}_{2}}}$ and $z=\dfrac{D}{{{D}_{3}}}$.
Now, we can re – write the system of linear equations as,
x + y + 0.z = 0,
0.x + y + z = 1,
x + 0.y + z = 3 and in determinant form as
$D=\left| \begin{matrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
\end{matrix} \right|$
Expanding determinant along ${{R}_{1}}$, we get
$D=1(1)-1(-1)+0$
$\Rightarrow $ D = 2
Now, ${{D}_{1}}=\left| \begin{matrix}
0 & 1 & 0 \\
1 & 1 & 1 \\
3 & 0 & 1 \\
\end{matrix} \right|$
Expanding determinant along ${{R}_{1}}$, we get
${{D}_{1}}=0-1(1-3)+0$
$\Rightarrow {{D}_{1}}=2$
Now, \[{{D}_{2}}=\left| \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 3 & 1 \\
\end{matrix} \right|\]
Expanding determinant along ${{R}_{1}}$, we get
${{D}_{2}}=1(1-3)-0+0$
$\Rightarrow {{D}_{2}}=-2$
Now, \[{{D}_{3}}=\left| \begin{matrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 3 \\
\end{matrix} \right|\]
Expanding determinant along ${{R}_{1}}$, we get
\[{{D}_{3}}=1(3-1)-1+0\]
$\Rightarrow {{D}_{3}}=1$
So, we know that according to Cramer’s rule
$x=\dfrac{D}{{{D}_{1}}}$ , $y=\dfrac{D}{{{D}_{2}}}$ and $z=\dfrac{D}{{{D}_{3}}}$.
So, $x=\dfrac{2}{2}$,$y=\dfrac{2}{-2}$ and $z=\dfrac{2}{1}$
We get, x = 1, y = -1 and z = 2.
Note: To solve this question, one must know how we expand the determinants and also one must know the concept of Cramer’s rule. Also, this rule works for any number of variable linear equations. While solving determinant and evaluating the values of variable x, y and z try not to make any calculation mistakes as this may give you wrong values of variables.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it