Answer

Verified

348.3k+ views

**Hint:**If f is continuous on [a,b], then the function g is defined by \[g(x) = \int\limits_a^x {f(t)dt} \],\[a \leqslant x \leqslant b\], is continuous on [a,b] and differentiable on (a,b), and \[g'(x) = f(x)\]

If f is continuous on [a,b], then \[\int\limits_a^b {f(x)dx} = F(b) - F(a)\]where F is any alternative of f, that is, a function such that F’=f

A definite integral is denoted by \[\int\limits_a^b {f(x)dx} \] which represent the area bounded by the curve \[y = f(x)\], the ordinates x=a, x=b and the x-axis.

**Complete step by step answer:**

Step 1: let,

\[I = \int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} \]

Now, from trigonometry properties we know that

Sin2x=2SinxCosx

Substituting the value of sin2x, we get

\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]

Step 2: from logarithm property we know that, \[\log (a.b) = \log a + \log b\], using this property of logarithm in our solution,we get

\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log 2 - \log \sin x - \log \cos x]dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]

Step 3: opening the closed bracket so that we can integrate each term separately

\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]

Now let

\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]

From properties of integration we know that,

\[\int\limits_0^a {f(x)dx} = \int\limits_0^a {f(a - x)} dx\]

Using this property, we get

\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]

\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos (\dfrac{\pi }{2} - x)dx} \]

\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]

Now, substituting the value of I1 in I we get

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]

Step 4: cancelling the term\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \], we get

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]

\[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} \]

\[I = - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} \] (Log2 is a constant and therefore taking log2 outside the integration)

\[I = - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]

\[I = - \log 2[\dfrac{\pi }{2} - 0]\]

After further simplification, we get

\[I = \dfrac{\pi }{2}\log \dfrac{1}{2}\]

Hence, the answer is\[\int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} = \dfrac{\pi }{2}\log \dfrac{1}{2}\]

**Note:**While converting \[\sin x\] to \[\cos x\] or vice-versa, always use the quadrant method for giving signs (negative or positive).

Use standard result for solving easily like\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx = - \dfrac{\pi }{2}} \log 2 = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How many crores make 10 million class 7 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE