Answer
Verified
393k+ views
Hint: If f is continuous on [a,b], then the function g is defined by \[g(x) = \int\limits_a^x {f(t)dt} \],\[a \leqslant x \leqslant b\], is continuous on [a,b] and differentiable on (a,b), and \[g'(x) = f(x)\]
If f is continuous on [a,b], then \[\int\limits_a^b {f(x)dx} = F(b) - F(a)\]where F is any alternative of f, that is, a function such that F’=f
A definite integral is denoted by \[\int\limits_a^b {f(x)dx} \] which represent the area bounded by the curve \[y = f(x)\], the ordinates x=a, x=b and the x-axis.
Complete step by step answer:
Step 1: let,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} \]
Now, from trigonometry properties we know that
Sin2x=2SinxCosx
Substituting the value of sin2x, we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
Step 2: from logarithm property we know that, \[\log (a.b) = \log a + \log b\], using this property of logarithm in our solution,we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log 2 - \log \sin x - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
Step 3: opening the closed bracket so that we can integrate each term separately
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
Now let
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
From properties of integration we know that,
\[\int\limits_0^a {f(x)dx} = \int\limits_0^a {f(a - x)} dx\]
Using this property, we get
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos (\dfrac{\pi }{2} - x)dx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Now, substituting the value of I1 in I we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Step 4: cancelling the term\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \], we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
\[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} \]
\[I = - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} \] (Log2 is a constant and therefore taking log2 outside the integration)
\[I = - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[I = - \log 2[\dfrac{\pi }{2} - 0]\]
After further simplification, we get
\[I = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Hence, the answer is\[\int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Note: While converting \[\sin x\] to \[\cos x\] or vice-versa, always use the quadrant method for giving signs (negative or positive).
Use standard result for solving easily like\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx = - \dfrac{\pi }{2}} \log 2 = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
If f is continuous on [a,b], then \[\int\limits_a^b {f(x)dx} = F(b) - F(a)\]where F is any alternative of f, that is, a function such that F’=f
A definite integral is denoted by \[\int\limits_a^b {f(x)dx} \] which represent the area bounded by the curve \[y = f(x)\], the ordinates x=a, x=b and the x-axis.
Complete step by step answer:
Step 1: let,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} \]
Now, from trigonometry properties we know that
Sin2x=2SinxCosx
Substituting the value of sin2x, we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
Step 2: from logarithm property we know that, \[\log (a.b) = \log a + \log b\], using this property of logarithm in our solution,we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log 2 - \log \sin x - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
Step 3: opening the closed bracket so that we can integrate each term separately
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
Now let
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
From properties of integration we know that,
\[\int\limits_0^a {f(x)dx} = \int\limits_0^a {f(a - x)} dx\]
Using this property, we get
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos (\dfrac{\pi }{2} - x)dx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Now, substituting the value of I1 in I we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Step 4: cancelling the term\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \], we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
\[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} \]
\[I = - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} \] (Log2 is a constant and therefore taking log2 outside the integration)
\[I = - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[I = - \log 2[\dfrac{\pi }{2} - 0]\]
After further simplification, we get
\[I = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Hence, the answer is\[\int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Note: While converting \[\sin x\] to \[\cos x\] or vice-versa, always use the quadrant method for giving signs (negative or positive).
Use standard result for solving easily like\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx = - \dfrac{\pi }{2}} \log 2 = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it