
Solve the following:
\[\int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} \]
Answer
518.7k+ views
Hint: If f is continuous on [a,b], then the function g is defined by \[g(x) = \int\limits_a^x {f(t)dt} \],\[a \leqslant x \leqslant b\], is continuous on [a,b] and differentiable on (a,b), and \[g'(x) = f(x)\]
If f is continuous on [a,b], then \[\int\limits_a^b {f(x)dx} = F(b) - F(a)\]where F is any alternative of f, that is, a function such that F’=f
A definite integral is denoted by \[\int\limits_a^b {f(x)dx} \] which represent the area bounded by the curve \[y = f(x)\], the ordinates x=a, x=b and the x-axis.
Complete step by step answer:
Step 1: let,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} \]
Now, from trigonometry properties we know that
Sin2x=2SinxCosx
Substituting the value of sin2x, we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
Step 2: from logarithm property we know that, \[\log (a.b) = \log a + \log b\], using this property of logarithm in our solution,we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log 2 - \log \sin x - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
Step 3: opening the closed bracket so that we can integrate each term separately
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
Now let
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
From properties of integration we know that,
\[\int\limits_0^a {f(x)dx} = \int\limits_0^a {f(a - x)} dx\]
Using this property, we get
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos (\dfrac{\pi }{2} - x)dx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Now, substituting the value of I1 in I we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Step 4: cancelling the term\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \], we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
\[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} \]
\[I = - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} \] (Log2 is a constant and therefore taking log2 outside the integration)
\[I = - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[I = - \log 2[\dfrac{\pi }{2} - 0]\]
After further simplification, we get
\[I = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Hence, the answer is\[\int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Note: While converting \[\sin x\] to \[\cos x\] or vice-versa, always use the quadrant method for giving signs (negative or positive).
Use standard result for solving easily like\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx = - \dfrac{\pi }{2}} \log 2 = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
If f is continuous on [a,b], then \[\int\limits_a^b {f(x)dx} = F(b) - F(a)\]where F is any alternative of f, that is, a function such that F’=f
A definite integral is denoted by \[\int\limits_a^b {f(x)dx} \] which represent the area bounded by the curve \[y = f(x)\], the ordinates x=a, x=b and the x-axis.
Complete step by step answer:
Step 1: let,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} \]
Now, from trigonometry properties we know that
Sin2x=2SinxCosx
Substituting the value of sin2x, we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
Step 2: from logarithm property we know that, \[\log (a.b) = \log a + \log b\], using this property of logarithm in our solution,we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log (2\sin x\cos x)]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[2\log \sin x - \log 2 - \log \sin x - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
Step 3: opening the closed bracket so that we can integrate each term separately
\[I = \int\limits_0^{\dfrac{\pi }{2}} {[\log \sin x - \log 2 - \log \cos x]dx} \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
Now let
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
From properties of integration we know that,
\[\int\limits_0^a {f(x)dx} = \int\limits_0^a {f(a - x)} dx\]
Using this property, we get
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos (\dfrac{\pi }{2} - x)dx} \]
\[{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Now, substituting the value of I1 in I we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
Step 4: cancelling the term\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \], we get
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - } \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \]
\[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} \]
\[I = - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} \] (Log2 is a constant and therefore taking log2 outside the integration)
\[I = - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[I = - \log 2[\dfrac{\pi }{2} - 0]\]
After further simplification, we get
\[I = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Hence, the answer is\[\int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} = \dfrac{\pi }{2}\log \dfrac{1}{2}\]
Note: While converting \[\sin x\] to \[\cos x\] or vice-versa, always use the quadrant method for giving signs (negative or positive).
Use standard result for solving easily like\[\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx = - \dfrac{\pi }{2}} \log 2 = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

